Searchable database of planar $(r,c)$-graphs for $c \geq 0$

graph r

c

n

constant link?

class

0 0 1 $0K_1$ SingletonGraph
1 0 2 $1K_1$ {Path, 2}
2 0 4 $2K_1$ SquareGraph
2 0 5 $2K_1$ {Cycle, 5}
2 0 6 $2K_1$ {Cycle, 6}
2 0 7 $2K_1$ {Cycle, 7}
2 0 8 $2K_1$ {Cycle, 8}
2 0 9 $2K_1$ {Cycle, 9}
2 0 10 $2K_1$ {Cycle, 10}
2 0 11 $2K_1$ {Cycle, 11}
2 0 12 $2K_1$ {Cycle, 12}
2 0 13 $2K_1$ {Cycle, 13}
2 0 14 $2K_1$ {Cycle, 14}
2 0 15 $2K_1$ {Cycle, 15}
2 0 16 $2K_1$ {Cycle, 16}
2 0 17 $2K_1$ {Cycle, 17}
2 0 18 $2K_1$ {Cycle, 18}
2 0 19 $2K_1$ {Cycle, 19}
2 0 20 $2K_1$ {Cycle, 20}
2 0 21 $2K_1$ {Cycle, 21}
2 0 22 $2K_1$ {Cycle, 22}
2 0 23 $2K_1$ {Cycle, 23}
2 0 24 $2K_1$ {Cycle, 24}
2 0 25 $2K_1$ {Cycle, 25}
2 0 26 $2K_1$ {Cycle, 26}
2 0 27 $2K_1$ {Cycle, 27}
2 0 28 $2K_1$ {Cycle, 28}
2 0 29 $2K_1$ {Cycle, 29}
2 0 30 $2K_1$ {Cycle, 30}
2 1 3 TriangleGraph
3 0 8 $3K_1$ CubicalGraph
3 0 10 $3K_1$ {Prism, 5}
3 0 12 $3K_1$ {CubicPolyhedral, 4}
3 0 12 $3K_1$ {Prism, 6}
3 0 14 $3K_1$ {CubicPolyhedral, 5}
3 0 14 $3K_1$ {CubicPolyhedral, 6}
3 0 14 $3K_1$ {CubicPolyhedral, 7}
3 0 14 $3K_1$ {CubicPolyhedral, 9}
3 0 14 $3K_1$ {Prism, 7}
3 0 16 $3K_1$ {CubicPolyhedral, 10}
3 0 16 $3K_1$ {CubicPolyhedral, 11}
3 0 16 $3K_1$ {CubicPolyhedral, 13}
3 0 16 $3K_1$ {CubicPolyhedral, 14}
3 0 16 $3K_1$ {CubicPolyhedral, 15}
3 0 16 $3K_1$ {CubicPolyhedral, 16}
3 0 16 $3K_1$ {CubicPolyhedral, 17}
3 0 16 $3K_1$ {CubicPolyhedral, 18}
3 0 16 $3K_1$ {CubicPolyhedral, 19}
3 0 16 $3K_1$ {CubicPolyhedral, 20}
3 0 16 $3K_1$ {GeneralizedPetersen, {8, 2}}
3 0 16 $3K_1$ {Prism, 8}
3 0 18 $3K_1$ {CubicPolyhedral, 22}
3 0 18 $3K_1$ {CubicPolyhedral, 23}
3 0 18 $3K_1$ {CubicPolyhedral, 24}
3 0 18 $3K_1$ {CubicPolyhedral, 25}
3 0 18 $3K_1$ {CubicPolyhedral, 26}
3 0 18 $3K_1$ {CubicPolyhedral, 27}
3 0 18 $3K_1$ {CubicPolyhedral, 28}
3 0 18 $3K_1$ {CubicPolyhedral, 29}
3 0 18 $3K_1$ {CubicPolyhedral, 30}
3 0 18 $3K_1$ {CubicPolyhedral, 31}
3 0 18 $3K_1$ {CubicPolyhedral, 32}
3 0 18 $3K_1$ {CubicPolyhedral, 33}
3 0 18 $3K_1$ {CubicPolyhedral, 34}
3 0 18 $3K_1$ {CubicPolyhedral, 35}
3 0 18 $3K_1$ {CubicPolyhedral, 36}
3 0 18 $3K_1$ {CubicPolyhedral, 37}
3 0 18 $3K_1$ {CubicPolyhedral, 38}
3 0 18 $3K_1$ {CubicPolyhedral, 39}
3 0 18 $3K_1$ {CubicPolyhedral, 40}
3 0 18 $3K_1$ {CubicPolyhedral, 41}
3 0 18 $3K_1$ {CubicPolyhedral, 42}
3 0 18 $3K_1$ {CubicPolyhedral, 43}
3 0 18 $3K_1$ {CubicPolyhedral, 44}
3 0 18 $3K_1$ {CubicPolyhedral, 45}
3 0 18 $3K_1$ {CubicPolyhedral, 46}
3 0 18 $3K_1$ {CubicPolyhedral, 47}
3 0 18 $3K_1$ {CubicPolyhedral, 48}
3 0 18 $3K_1$ {CubicPolyhedral, 49}
3 0 18 $3K_1$ {CubicPolyhedral, 50}
3 0 18 $3K_1$ {CubicPolyhedral, 51}
3 0 18 $3K_1$ {CubicPolyhedral, 52}
3 0 18 $3K_1$ {CubicPolyhedral, 53}
3 0 18 $3K_1$ {CubicPolyhedral, 54}
3 0 18 $3K_1$ {Prism, 9}
3 0 20 $3K_1$ DodecahedralGraph
3 0 20 $3K_1$ {Prism, 10}
3 0 22 $3K_1$ {Prism, 11}
3 0 24 $3K_1$ {Cubic, {24, 1}}
3 0 24 $3K_1$ {Cubic, {24, 3}}
3 0 24 $3K_1$ {GeneralizedPetersen, {12, 2}}
3 0 24 $3K_1$ {Prism, 12}
3 0 24 $3K_1$ TruncatedOctahedralGraph
3 0 26 $3K_1$ {Fullerene, {26, 1}}
3 0 26 $3K_1$ {Prism, 13}
3 0 28 $3K_1$ {Fullerene, {28, 1}}
3 0 28 $3K_1$ {Fullerene, {28, 2}}
3 0 28 $3K_1$ {GeneralizedPetersen, {14, 2}}
3 0 28 $3K_1$ {Prism, 14}
3 0 30 $3K_1$ {Fullerene, {30, 1}}
3 0 30 $3K_1$ {Fullerene, {30, 2}}
3 0 30 $3K_1$ {Fullerene, {30, 3}}
3 0 30 $3K_1$ {Prism, 15}
3 0 32 $3K_1$ ChamferedCubicalGraph
3 0 32 $3K_1$ {Fullerene, {32, 1}}
3 0 32 $3K_1$ {Fullerene, {32, 2}}
3 0 32 $3K_1$ {Fullerene, {32, 3}}
3 0 32 $3K_1$ {Fullerene, {32, 4}}
3 0 32 $3K_1$ {Fullerene, {32, 5}}
3 0 32 $3K_1$ {Fullerene, {32, 6}}
3 0 32 $3K_1$ {GeneralizedPetersen, {16, 2}}
3 0 32 $3K_1$ {Prism, 16}
3 0 34 $3K_1$ {Fullerene, {34, 1}}
3 0 34 $3K_1$ {Fullerene, {34, 2}}
3 0 34 $3K_1$ {Fullerene, {34, 3}}
3 0 34 $3K_1$ {Fullerene, {34, 4}}
3 0 34 $3K_1$ {Fullerene, {34, 5}}
3 0 34 $3K_1$ {Fullerene, {34, 6}}
3 0 34 $3K_1$ {Prism, 17}
3 0 36 $3K_1$ {Fullerene, {36, 1}}
3 0 36 $3K_1$ {Fullerene, {36, 2}}
3 0 36 $3K_1$ {Fullerene, {36, 3}}
3 0 36 $3K_1$ {Fullerene, {36, 4}}
3 0 36 $3K_1$ {Fullerene, {36, 5}}
3 0 36 $3K_1$ {Fullerene, {36, 6}}
3 0 36 $3K_1$ {Fullerene, {36, 7}}
3 0 36 $3K_1$ {Fullerene, {36, 8}}
3 0 36 $3K_1$ {Fullerene, {36, 9}}
3 0 36 $3K_1$ {Fullerene, {36, 10}}
3 0 36 $3K_1$ {Fullerene, {36, 11}}
3 0 36 $3K_1$ {Fullerene, {36, 12}}
3 0 36 $3K_1$ {Fullerene, {36, 13}}
3 0 36 $3K_1$ {Fullerene, {36, 14}}
3 0 36 $3K_1$ {Fullerene, {36, 15}}
3 0 36 $3K_1$ {GeneralizedPetersen, {18, 2}}
3 0 36 $3K_1$ JabulaniSkeleton
3 0 36 $3K_1$ {Prism, 18}
3 0 38 $3K_1$ BarnetteBosakLederbergGraph
3 0 38 $3K_1$ {Fullerene, {38, 1}}
3 0 38 $3K_1$ {Fullerene, {38, 2}}
3 0 38 $3K_1$ {Fullerene, {38, 3}}
3 0 38 $3K_1$ {Fullerene, {38, 4}}
3 0 38 $3K_1$ {Fullerene, {38, 5}}
3 0 38 $3K_1$ {Fullerene, {38, 6}}
3 0 38 $3K_1$ {Fullerene, {38, 7}}
3 0 38 $3K_1$ {Fullerene, {38, 8}}
3 0 38 $3K_1$ {Fullerene, {38, 9}}
3 0 38 $3K_1$ {Fullerene, {38, 10}}
3 0 38 $3K_1$ {Fullerene, {38, 11}}
3 0 38 $3K_1$ {Fullerene, {38, 12}}
3 0 38 $3K_1$ {Fullerene, {38, 13}}
3 0 38 $3K_1$ {Fullerene, {38, 14}}
3 0 38 $3K_1$ {Fullerene, {38, 15}}
3 0 38 $3K_1$ {Fullerene, {38, 16}}
3 0 38 $3K_1$ {Fullerene, {38, 17}}
3 0 38 $3K_1$ {Prism, 19}
3 0 40 $3K_1$ {Fullerene, {40, 1}}
3 0 40 $3K_1$ {Fullerene, {40, 2}}
3 0 40 $3K_1$ {Fullerene, {40, 3}}
3 0 40 $3K_1$ {Fullerene, {40, 4}}
3 0 40 $3K_1$ {Fullerene, {40, 5}}
3 0 40 $3K_1$ {Fullerene, {40, 6}}
3 0 40 $3K_1$ {Fullerene, {40, 7}}
3 0 40 $3K_1$ {Fullerene, {40, 8}}
3 0 40 $3K_1$ {Fullerene, {40, 9}}
3 0 40 $3K_1$ {Fullerene, {40, 10}}
3 0 40 $3K_1$ {Fullerene, {40, 11}}
3 0 40 $3K_1$ {Fullerene, {40, 12}}
3 0 40 $3K_1$ {Fullerene, {40, 13}}
3 0 40 $3K_1$ {Fullerene, {40, 14}}
3 0 40 $3K_1$ {Fullerene, {40, 15}}
3 0 40 $3K_1$ {Fullerene, {40, 16}}
3 0 40 $3K_1$ {Fullerene, {40, 17}}
3 0 40 $3K_1$ {Fullerene, {40, 18}}
3 0 40 $3K_1$ {Fullerene, {40, 19}}
3 0 40 $3K_1$ {Fullerene, {40, 20}}
3 0 40 $3K_1$ {Fullerene, {40, 21}}
3 0 40 $3K_1$ {Fullerene, {40, 22}}
3 0 40 $3K_1$ {Fullerene, {40, 23}}
3 0 40 $3K_1$ {Fullerene, {40, 24}}
3 0 40 $3K_1$ {Fullerene, {40, 25}}
3 0 40 $3K_1$ {Fullerene, {40, 26}}
3 0 40 $3K_1$ {Fullerene, {40, 27}}
3 0 40 $3K_1$ {Fullerene, {40, 28}}
3 0 40 $3K_1$ {Fullerene, {40, 29}}
3 0 40 $3K_1$ {Fullerene, {40, 30}}
3 0 40 $3K_1$ {Fullerene, {40, 31}}
3 0 40 $3K_1$ {Fullerene, {40, 32}}
3 0 40 $3K_1$ {Fullerene, {40, 33}}
3 0 40 $3K_1$ {Fullerene, {40, 34}}
3 0 40 $3K_1$ {Fullerene, {40, 35}}
3 0 40 $3K_1$ {Fullerene, {40, 36}}
3 0 40 $3K_1$ {Fullerene, {40, 37}}
3 0 40 $3K_1$ {Fullerene, {40, 38}}
3 0 40 $3K_1$ {Fullerene, {40, 39}}
3 0 40 $3K_1$ {Fullerene, {40, 40}}
3 0 40 $3K_1$ {GeneralizedPetersen, {20, 2}}
3 0 40 $3K_1$ {Prism, 20}
3 0 42 $3K_1$ {Cubic, {42, 4}}
3 0 42 $3K_1$ {CubicNonhamiltonian, {42, 3}}
3 0 42 $3K_1$ FaulknerYoungerGraph42
3 0 42 $3K_1$ {Fullerene, {42, 1}}
3 0 42 $3K_1$ {Fullerene, {42, 2}}
3 0 42 $3K_1$ {Fullerene, {42, 3}}
3 0 42 $3K_1$ {Fullerene, {42, 4}}
3 0 42 $3K_1$ {Fullerene, {42, 5}}
3 0 42 $3K_1$ {Fullerene, {42, 6}}
3 0 42 $3K_1$ {Fullerene, {42, 7}}
3 0 42 $3K_1$ {Fullerene, {42, 8}}
3 0 42 $3K_1$ {Fullerene, {42, 9}}
3 0 42 $3K_1$ {Fullerene, {42, 10}}
3 0 42 $3K_1$ {Fullerene, {42, 11}}
3 0 42 $3K_1$ {Fullerene, {42, 12}}
3 0 42 $3K_1$ {Fullerene, {42, 13}}
3 0 42 $3K_1$ {Fullerene, {42, 14}}
3 0 42 $3K_1$ {Fullerene, {42, 15}}
3 0 42 $3K_1$ {Fullerene, {42, 16}}
3 0 42 $3K_1$ {Fullerene, {42, 17}}
3 0 42 $3K_1$ {Fullerene, {42, 18}}
3 0 42 $3K_1$ {Fullerene, {42, 19}}
3 0 42 $3K_1$ {Fullerene, {42, 20}}
3 0 42 $3K_1$ {Fullerene, {42, 21}}
3 0 42 $3K_1$ {Fullerene, {42, 22}}
3 0 42 $3K_1$ {Fullerene, {42, 23}}
3 0 42 $3K_1$ {Fullerene, {42, 24}}
3 0 42 $3K_1$ {Fullerene, {42, 25}}
3 0 42 $3K_1$ {Fullerene, {42, 26}}
3 0 42 $3K_1$ {Fullerene, {42, 27}}
3 0 42 $3K_1$ {Fullerene, {42, 28}}
3 0 42 $3K_1$ {Fullerene, {42, 29}}
3 0 42 $3K_1$ {Fullerene, {42, 30}}
3 0 42 $3K_1$ {Fullerene, {42, 31}}
3 0 42 $3K_1$ {Fullerene, {42, 32}}
3 0 42 $3K_1$ {Fullerene, {42, 33}}
3 0 42 $3K_1$ {Fullerene, {42, 34}}
3 0 42 $3K_1$ {Fullerene, {42, 35}}
3 0 42 $3K_1$ {Fullerene, {42, 36}}
3 0 42 $3K_1$ {Fullerene, {42, 37}}
3 0 42 $3K_1$ {Fullerene, {42, 38}}
3 0 42 $3K_1$ {Fullerene, {42, 39}}
3 0 42 $3K_1$ {Fullerene, {42, 40}}
3 0 42 $3K_1$ {Fullerene, {42, 41}}
3 0 42 $3K_1$ {Fullerene, {42, 42}}
3 0 42 $3K_1$ {Fullerene, {42, 43}}
3 0 42 $3K_1$ {Fullerene, {42, 44}}
3 0 42 $3K_1$ {Fullerene, {42, 45}}
3 0 42 $3K_1$ GrinbergGraph42
3 0 42 $3K_1$ {Prism, 21}
3 0 44 $3K_1$ FaulknerYoungerGraph44
3 0 44 $3K_1$ {Fullerene, {44, 1}}
3 0 44 $3K_1$ {Fullerene, {44, 2}}
3 0 44 $3K_1$ {Fullerene, {44, 3}}
3 0 44 $3K_1$ {Fullerene, {44, 4}}
3 0 44 $3K_1$ {Fullerene, {44, 5}}
3 0 44 $3K_1$ {Fullerene, {44, 6}}
3 0 44 $3K_1$ {Fullerene, {44, 7}}
3 0 44 $3K_1$ {Fullerene, {44, 8}}
3 0 44 $3K_1$ {Fullerene, {44, 9}}
3 0 44 $3K_1$ {Fullerene, {44, 10}}
3 0 44 $3K_1$ {Fullerene, {44, 11}}
3 0 44 $3K_1$ {Fullerene, {44, 12}}
3 0 44 $3K_1$ {Fullerene, {44, 13}}
3 0 44 $3K_1$ {Fullerene, {44, 14}}
3 0 44 $3K_1$ {Fullerene, {44, 15}}
3 0 44 $3K_1$ {Fullerene, {44, 16}}
3 0 44 $3K_1$ {Fullerene, {44, 17}}
3 0 44 $3K_1$ {Fullerene, {44, 18}}
3 0 44 $3K_1$ {Fullerene, {44, 19}}
3 0 44 $3K_1$ {Fullerene, {44, 20}}
3 0 44 $3K_1$ {Fullerene, {44, 21}}
3 0 44 $3K_1$ {Fullerene, {44, 22}}
3 0 44 $3K_1$ {Fullerene, {44, 23}}
3 0 44 $3K_1$ {Fullerene, {44, 24}}
3 0 44 $3K_1$ {Fullerene, {44, 25}}
3 0 44 $3K_1$ {Fullerene, {44, 26}}
3 0 44 $3K_1$ {Fullerene, {44, 27}}
3 0 44 $3K_1$ {Fullerene, {44, 28}}
3 0 44 $3K_1$ {Fullerene, {44, 29}}
3 0 44 $3K_1$ {Fullerene, {44, 30}}
3 0 44 $3K_1$ {Fullerene, {44, 31}}
3 0 44 $3K_1$ {Fullerene, {44, 32}}
3 0 44 $3K_1$ {Fullerene, {44, 33}}
3 0 44 $3K_1$ {Fullerene, {44, 34}}
3 0 44 $3K_1$ {Fullerene, {44, 35}}
3 0 44 $3K_1$ {Fullerene, {44, 36}}
3 0 44 $3K_1$ {Fullerene, {44, 37}}
3 0 44 $3K_1$ {Fullerene, {44, 38}}
3 0 44 $3K_1$ {Fullerene, {44, 39}}
3 0 44 $3K_1$ {Fullerene, {44, 40}}
3 0 44 $3K_1$ {Fullerene, {44, 41}}
3 0 44 $3K_1$ {Fullerene, {44, 42}}
3 0 44 $3K_1$ {Fullerene, {44, 43}}
3 0 44 $3K_1$ {Fullerene, {44, 44}}
3 0 44 $3K_1$ {Fullerene, {44, 45}}
3 0 44 $3K_1$ {Fullerene, {44, 46}}
3 0 44 $3K_1$ {Fullerene, {44, 47}}
3 0 44 $3K_1$ {Fullerene, {44, 48}}
3 0 44 $3K_1$ {Fullerene, {44, 49}}
3 0 44 $3K_1$ {Fullerene, {44, 50}}
3 0 44 $3K_1$ {Fullerene, {44, 51}}
3 0 44 $3K_1$ {Fullerene, {44, 52}}
3 0 44 $3K_1$ {Fullerene, {44, 53}}
3 0 44 $3K_1$ {Fullerene, {44, 54}}
3 0 44 $3K_1$ {Fullerene, {44, 55}}
3 0 44 $3K_1$ {Fullerene, {44, 56}}
3 0 44 $3K_1$ {Fullerene, {44, 57}}
3 0 44 $3K_1$ {Fullerene, {44, 58}}
3 0 44 $3K_1$ {Fullerene, {44, 59}}
3 0 44 $3K_1$ {Fullerene, {44, 60}}
3 0 44 $3K_1$ {Fullerene, {44, 61}}
3 0 44 $3K_1$ {Fullerene, {44, 62}}
3 0 44 $3K_1$ {Fullerene, {44, 63}}
3 0 44 $3K_1$ {Fullerene, {44, 64}}
3 0 44 $3K_1$ {Fullerene, {44, 65}}
3 0 44 $3K_1$ {Fullerene, {44, 66}}
3 0 44 $3K_1$ {Fullerene, {44, 67}}
3 0 44 $3K_1$ {Fullerene, {44, 68}}
3 0 44 $3K_1$ {Fullerene, {44, 69}}
3 0 44 $3K_1$ {Fullerene, {44, 70}}
3 0 44 $3K_1$ {Fullerene, {44, 71}}
3 0 44 $3K_1$ {Fullerene, {44, 72}}
3 0 44 $3K_1$ {Fullerene, {44, 73}}
3 0 44 $3K_1$ {Fullerene, {44, 74}}
3 0 44 $3K_1$ {Fullerene, {44, 75}}
3 0 44 $3K_1$ {Fullerene, {44, 76}}
3 0 44 $3K_1$ {Fullerene, {44, 77}}
3 0 44 $3K_1$ {Fullerene, {44, 78}}
3 0 44 $3K_1$ {Fullerene, {44, 79}}
3 0 44 $3K_1$ {Fullerene, {44, 80}}
3 0 44 $3K_1$ {Fullerene, {44, 81}}
3 0 44 $3K_1$ {Fullerene, {44, 82}}
3 0 44 $3K_1$ {Fullerene, {44, 83}}
3 0 44 $3K_1$ {Fullerene, {44, 84}}
3 0 44 $3K_1$ {Fullerene, {44, 85}}
3 0 44 $3K_1$ {Fullerene, {44, 86}}
3 0 44 $3K_1$ {Fullerene, {44, 87}}
3 0 44 $3K_1$ {Fullerene, {44, 88}}
3 0 44 $3K_1$ {Fullerene, {44, 89}}
3 0 44 $3K_1$ GrinbergGraph44
3 0 44 $3K_1$ {Prism, 22}
3 0 46 $3K_1$ {CubicNonhamiltonian, {46, 2}}
3 0 46 $3K_1$ {CubicNonhamiltonian, {46, 3}}
3 0 46 $3K_1$ {CubicNonhamiltonian, {46, 4}}
3 0 46 $3K_1$ {Fullerene, {46, 1}}
3 0 46 $3K_1$ {Fullerene, {46, 2}}
3 0 46 $3K_1$ {Fullerene, {46, 3}}
3 0 46 $3K_1$ {Fullerene, {46, 4}}
3 0 46 $3K_1$ {Fullerene, {46, 5}}
3 0 46 $3K_1$ {Fullerene, {46, 6}}
3 0 46 $3K_1$ {Fullerene, {46, 7}}
3 0 46 $3K_1$ {Fullerene, {46, 8}}
3 0 46 $3K_1$ {Fullerene, {46, 9}}
3 0 46 $3K_1$ {Fullerene, {46, 10}}
3 0 46 $3K_1$ {Fullerene, {46, 11}}
3 0 46 $3K_1$ {Fullerene, {46, 12}}
3 0 46 $3K_1$ {Fullerene, {46, 13}}
3 0 46 $3K_1$ {Fullerene, {46, 14}}
3 0 46 $3K_1$ {Fullerene, {46, 15}}
3 0 46 $3K_1$ {Fullerene, {46, 16}}
3 0 46 $3K_1$ {Fullerene, {46, 17}}
3 0 46 $3K_1$ {Fullerene, {46, 18}}
3 0 46 $3K_1$ {Fullerene, {46, 19}}
3 0 46 $3K_1$ {Fullerene, {46, 20}}
3 0 46 $3K_1$ {Fullerene, {46, 21}}
3 0 46 $3K_1$ {Fullerene, {46, 22}}
3 0 46 $3K_1$ {Fullerene, {46, 23}}
3 0 46 $3K_1$ {Fullerene, {46, 24}}
3 0 46 $3K_1$ {Fullerene, {46, 25}}
3 0 46 $3K_1$ {Fullerene, {46, 26}}
3 0 46 $3K_1$ {Fullerene, {46, 27}}
3 0 46 $3K_1$ {Fullerene, {46, 28}}
3 0 46 $3K_1$ {Fullerene, {46, 29}}
3 0 46 $3K_1$ {Fullerene, {46, 30}}
3 0 46 $3K_1$ {Fullerene, {46, 31}}
3 0 46 $3K_1$ {Fullerene, {46, 32}}
3 0 46 $3K_1$ {Fullerene, {46, 33}}
3 0 46 $3K_1$ {Fullerene, {46, 34}}
3 0 46 $3K_1$ {Fullerene, {46, 35}}
3 0 46 $3K_1$ {Fullerene, {46, 36}}
3 0 46 $3K_1$ {Fullerene, {46, 37}}
3 0 46 $3K_1$ {Fullerene, {46, 38}}
3 0 46 $3K_1$ {Fullerene, {46, 39}}
3 0 46 $3K_1$ {Fullerene, {46, 40}}
3 0 46 $3K_1$ {Fullerene, {46, 41}}
3 0 46 $3K_1$ {Fullerene, {46, 42}}
3 0 46 $3K_1$ {Fullerene, {46, 43}}
3 0 46 $3K_1$ {Fullerene, {46, 44}}
3 0 46 $3K_1$ {Fullerene, {46, 45}}
3 0 46 $3K_1$ {Fullerene, {46, 46}}
3 0 46 $3K_1$ {Fullerene, {46, 47}}
3 0 46 $3K_1$ {Fullerene, {46, 48}}
3 0 46 $3K_1$ {Fullerene, {46, 49}}
3 0 46 $3K_1$ {Fullerene, {46, 50}}
3 0 46 $3K_1$ {Fullerene, {46, 51}}
3 0 46 $3K_1$ {Fullerene, {46, 52}}
3 0 46 $3K_1$ {Fullerene, {46, 53}}
3 0 46 $3K_1$ {Fullerene, {46, 54}}
3 0 46 $3K_1$ {Fullerene, {46, 55}}
3 0 46 $3K_1$ {Fullerene, {46, 56}}
3 0 46 $3K_1$ {Fullerene, {46, 57}}
3 0 46 $3K_1$ {Fullerene, {46, 58}}
3 0 46 $3K_1$ {Fullerene, {46, 59}}
3 0 46 $3K_1$ {Fullerene, {46, 60}}
3 0 46 $3K_1$ {Fullerene, {46, 61}}
3 0 46 $3K_1$ {Fullerene, {46, 62}}
3 0 46 $3K_1$ {Fullerene, {46, 63}}
3 0 46 $3K_1$ {Fullerene, {46, 64}}
3 0 46 $3K_1$ {Fullerene, {46, 65}}
3 0 46 $3K_1$ {Fullerene, {46, 66}}
3 0 46 $3K_1$ {Fullerene, {46, 67}}
3 0 46 $3K_1$ {Fullerene, {46, 68}}
3 0 46 $3K_1$ {Fullerene, {46, 69}}
3 0 46 $3K_1$ {Fullerene, {46, 70}}
3 0 46 $3K_1$ {Fullerene, {46, 71}}
3 0 46 $3K_1$ {Fullerene, {46, 72}}
3 0 46 $3K_1$ {Fullerene, {46, 73}}
3 0 46 $3K_1$ {Fullerene, {46, 74}}
3 0 46 $3K_1$ {Fullerene, {46, 75}}
3 0 46 $3K_1$ {Fullerene, {46, 76}}
3 0 46 $3K_1$ {Fullerene, {46, 77}}
3 0 46 $3K_1$ {Fullerene, {46, 78}}
3 0 46 $3K_1$ {Fullerene, {46, 79}}
3 0 46 $3K_1$ {Fullerene, {46, 80}}
3 0 46 $3K_1$ {Fullerene, {46, 81}}
3 0 46 $3K_1$ {Fullerene, {46, 82}}
3 0 46 $3K_1$ {Fullerene, {46, 83}}
3 0 46 $3K_1$ {Fullerene, {46, 84}}
3 0 46 $3K_1$ {Fullerene, {46, 85}}
3 0 46 $3K_1$ {Fullerene, {46, 86}}
3 0 46 $3K_1$ {Fullerene, {46, 87}}
3 0 46 $3K_1$ {Fullerene, {46, 88}}
3 0 46 $3K_1$ {Fullerene, {46, 89}}
3 0 46 $3K_1$ {Fullerene, {46, 90}}
3 0 46 $3K_1$ {Fullerene, {46, 91}}
3 0 46 $3K_1$ {Fullerene, {46, 92}}
3 0 46 $3K_1$ {Fullerene, {46, 93}}
3 0 46 $3K_1$ {Fullerene, {46, 94}}
3 0 46 $3K_1$ {Fullerene, {46, 95}}
3 0 46 $3K_1$ {Fullerene, {46, 96}}
3 0 46 $3K_1$ {Fullerene, {46, 97}}
3 0 46 $3K_1$ {Fullerene, {46, 98}}
3 0 46 $3K_1$ {Fullerene, {46, 99}}
3 0 46 $3K_1$ {Fullerene, {46, 100}}
3 0 46 $3K_1$ {Fullerene, {46, 101}}
3 0 46 $3K_1$ {Fullerene, {46, 102}}
3 0 46 $3K_1$ {Fullerene, {46, 103}}
3 0 46 $3K_1$ {Fullerene, {46, 104}}
3 0 46 $3K_1$ {Fullerene, {46, 105}}
3 0 46 $3K_1$ {Fullerene, {46, 106}}
3 0 46 $3K_1$ {Fullerene, {46, 107}}
3 0 46 $3K_1$ {Fullerene, {46, 108}}
3 0 46 $3K_1$ {Fullerene, {46, 109}}
3 0 46 $3K_1$ {Fullerene, {46, 110}}
3 0 46 $3K_1$ {Fullerene, {46, 111}}
3 0 46 $3K_1$ {Fullerene, {46, 112}}
3 0 46 $3K_1$ {Fullerene, {46, 113}}
3 0 46 $3K_1$ {Fullerene, {46, 114}}
3 0 46 $3K_1$ {Fullerene, {46, 115}}
3 0 46 $3K_1$ {Fullerene, {46, 116}}
3 0 46 $3K_1$ GrinbergGraph46
3 0 46 $3K_1$ {Prism, 23}
3 0 46 $3K_1$ TutteGraph
3 0 48 $3K_1$ {Cubic, {48, 1}}
3 0 48 $3K_1$ {Fullerene, {48, 1}}
3 0 48 $3K_1$ {Fullerene, {48, 2}}
3 0 48 $3K_1$ {Fullerene, {48, 3}}
3 0 48 $3K_1$ {Fullerene, {48, 4}}
3 0 48 $3K_1$ {Fullerene, {48, 5}}
3 0 48 $3K_1$ {Fullerene, {48, 6}}
3 0 48 $3K_1$ {Fullerene, {48, 7}}
3 0 48 $3K_1$ {Fullerene, {48, 8}}
3 0 48 $3K_1$ {Fullerene, {48, 9}}
3 0 48 $3K_1$ {Fullerene, {48, 10}}
3 0 48 $3K_1$ {Fullerene, {48, 11}}
3 0 48 $3K_1$ {Fullerene, {48, 12}}
3 0 48 $3K_1$ {Fullerene, {48, 13}}
3 0 48 $3K_1$ {Fullerene, {48, 14}}
3 0 48 $3K_1$ {Fullerene, {48, 15}}
3 0 48 $3K_1$ {Fullerene, {48, 16}}
3 0 48 $3K_1$ {Fullerene, {48, 17}}
3 0 48 $3K_1$ {Fullerene, {48, 18}}
3 0 48 $3K_1$ {Fullerene, {48, 19}}
3 0 48 $3K_1$ {Fullerene, {48, 20}}
3 0 48 $3K_1$ {Fullerene, {48, 21}}
3 0 48 $3K_1$ {Fullerene, {48, 22}}
3 0 48 $3K_1$ {Fullerene, {48, 23}}
3 0 48 $3K_1$ {Fullerene, {48, 24}}
3 0 48 $3K_1$ {Fullerene, {48, 25}}
3 0 48 $3K_1$ {Fullerene, {48, 26}}
3 0 48 $3K_1$ {Fullerene, {48, 27}}
3 0 48 $3K_1$ {Fullerene, {48, 28}}
3 0 48 $3K_1$ {Fullerene, {48, 29}}
3 0 48 $3K_1$ {Fullerene, {48, 30}}
3 0 48 $3K_1$ {Fullerene, {48, 31}}
3 0 48 $3K_1$ {Fullerene, {48, 32}}
3 0 48 $3K_1$ {Fullerene, {48, 33}}
3 0 48 $3K_1$ {Fullerene, {48, 34}}
3 0 48 $3K_1$ {Fullerene, {48, 35}}
3 0 48 $3K_1$ {Fullerene, {48, 36}}
3 0 48 $3K_1$ {Fullerene, {48, 37}}
3 0 48 $3K_1$ {Fullerene, {48, 38}}
3 0 48 $3K_1$ {Fullerene, {48, 39}}
3 0 48 $3K_1$ {Fullerene, {48, 40}}
3 0 48 $3K_1$ {Fullerene, {48, 41}}
3 0 48 $3K_1$ {Fullerene, {48, 42}}
3 0 48 $3K_1$ {Fullerene, {48, 43}}
3 0 48 $3K_1$ {Fullerene, {48, 44}}
3 0 48 $3K_1$ {Fullerene, {48, 45}}
3 0 48 $3K_1$ {Fullerene, {48, 46}}
3 0 48 $3K_1$ {Fullerene, {48, 47}}
3 0 48 $3K_1$ {Fullerene, {48, 48}}
3 0 48 $3K_1$ {Fullerene, {48, 49}}
3 0 48 $3K_1$ {Fullerene, {48, 50}}
3 0 48 $3K_1$ {Fullerene, {48, 51}}
3 0 48 $3K_1$ {Fullerene, {48, 52}}
3 0 48 $3K_1$ {Fullerene, {48, 53}}
3 0 48 $3K_1$ {Fullerene, {48, 54}}
3 0 48 $3K_1$ {Fullerene, {48, 55}}
3 0 48 $3K_1$ {Fullerene, {48, 56}}
3 0 48 $3K_1$ {Fullerene, {48, 57}}
3 0 48 $3K_1$ {Fullerene, {48, 58}}
3 0 48 $3K_1$ {Fullerene, {48, 59}}
3 0 48 $3K_1$ {Fullerene, {48, 60}}
3 0 48 $3K_1$ {Fullerene, {48, 61}}
3 0 48 $3K_1$ {Fullerene, {48, 62}}
3 0 48 $3K_1$ {Fullerene, {48, 63}}
3 0 48 $3K_1$ {Fullerene, {48, 64}}
3 0 48 $3K_1$ {Fullerene, {48, 65}}
3 0 48 $3K_1$ {Fullerene, {48, 66}}
3 0 48 $3K_1$ {Fullerene, {48, 67}}
3 0 48 $3K_1$ {Fullerene, {48, 68}}
3 0 48 $3K_1$ {Fullerene, {48, 69}}
3 0 48 $3K_1$ {Fullerene, {48, 70}}
3 0 48 $3K_1$ {Fullerene, {48, 71}}
3 0 48 $3K_1$ {Fullerene, {48, 72}}
3 0 48 $3K_1$ {Fullerene, {48, 73}}
3 0 48 $3K_1$ {Fullerene, {48, 74}}
3 0 48 $3K_1$ {Fullerene, {48, 75}}
3 0 48 $3K_1$ {Fullerene, {48, 76}}
3 0 48 $3K_1$ {Fullerene, {48, 77}}
3 0 48 $3K_1$ {Fullerene, {48, 78}}
3 0 48 $3K_1$ {Fullerene, {48, 79}}
3 0 48 $3K_1$ {Fullerene, {48, 80}}
3 0 48 $3K_1$ {Fullerene, {48, 81}}
3 0 48 $3K_1$ {Fullerene, {48, 82}}
3 0 48 $3K_1$ {Fullerene, {48, 83}}
3 0 48 $3K_1$ {Fullerene, {48, 84}}
3 0 48 $3K_1$ {Fullerene, {48, 85}}
3 0 48 $3K_1$ {Fullerene, {48, 86}}
3 0 48 $3K_1$ {Fullerene, {48, 87}}
3 0 48 $3K_1$ {Fullerene, {48, 88}}
3 0 48 $3K_1$ {Fullerene, {48, 89}}
3 0 48 $3K_1$ {Fullerene, {48, 90}}
3 0 48 $3K_1$ {Fullerene, {48, 91}}
3 0 48 $3K_1$ {Fullerene, {48, 92}}
3 0 48 $3K_1$ {Fullerene, {48, 93}}
3 0 48 $3K_1$ {Fullerene, {48, 94}}
3 0 48 $3K_1$ {Fullerene, {48, 95}}
3 0 48 $3K_1$ {Fullerene, {48, 96}}
3 0 48 $3K_1$ {Fullerene, {48, 97}}
3 0 48 $3K_1$ {Fullerene, {48, 98}}
3 0 48 $3K_1$ {Fullerene, {48, 99}}
3 0 48 $3K_1$ {Fullerene, {48, 100}}
3 0 48 $3K_1$ {Fullerene, {48, 101}}
3 0 48 $3K_1$ {Fullerene, {48, 102}}
3 0 48 $3K_1$ {Fullerene, {48, 103}}
3 0 48 $3K_1$ {Fullerene, {48, 104}}
3 0 48 $3K_1$ {Fullerene, {48, 105}}
3 0 48 $3K_1$ {Fullerene, {48, 106}}
3 0 48 $3K_1$ {Fullerene, {48, 107}}
3 0 48 $3K_1$ {Fullerene, {48, 108}}
3 0 48 $3K_1$ {Fullerene, {48, 109}}
3 0 48 $3K_1$ {Fullerene, {48, 110}}
3 0 48 $3K_1$ {Fullerene, {48, 111}}
3 0 48 $3K_1$ {Fullerene, {48, 112}}
3 0 48 $3K_1$ {Fullerene, {48, 113}}
3 0 48 $3K_1$ {Fullerene, {48, 114}}
3 0 48 $3K_1$ {Fullerene, {48, 115}}
3 0 48 $3K_1$ {Fullerene, {48, 116}}
3 0 48 $3K_1$ {Fullerene, {48, 117}}
3 0 48 $3K_1$ {Fullerene, {48, 118}}
3 0 48 $3K_1$ {Fullerene, {48, 119}}
3 0 48 $3K_1$ {Fullerene, {48, 120}}
3 0 48 $3K_1$ {Fullerene, {48, 121}}
3 0 48 $3K_1$ {Fullerene, {48, 122}}
3 0 48 $3K_1$ {Fullerene, {48, 123}}
3 0 48 $3K_1$ {Fullerene, {48, 124}}
3 0 48 $3K_1$ {Fullerene, {48, 125}}
3 0 48 $3K_1$ {Fullerene, {48, 126}}
3 0 48 $3K_1$ {Fullerene, {48, 127}}
3 0 48 $3K_1$ {Fullerene, {48, 128}}
3 0 48 $3K_1$ {Fullerene, {48, 129}}
3 0 48 $3K_1$ {Fullerene, {48, 130}}
3 0 48 $3K_1$ {Fullerene, {48, 131}}
3 0 48 $3K_1$ {Fullerene, {48, 132}}
3 0 48 $3K_1$ {Fullerene, {48, 133}}
3 0 48 $3K_1$ {Fullerene, {48, 134}}
3 0 48 $3K_1$ {Fullerene, {48, 135}}
3 0 48 $3K_1$ {Fullerene, {48, 136}}
3 0 48 $3K_1$ {Fullerene, {48, 137}}
3 0 48 $3K_1$ {Fullerene, {48, 138}}
3 0 48 $3K_1$ {Fullerene, {48, 139}}
3 0 48 $3K_1$ {Fullerene, {48, 140}}
3 0 48 $3K_1$ {Fullerene, {48, 141}}
3 0 48 $3K_1$ {Fullerene, {48, 142}}
3 0 48 $3K_1$ {Fullerene, {48, 143}}
3 0 48 $3K_1$ {Fullerene, {48, 144}}
3 0 48 $3K_1$ {Fullerene, {48, 145}}
3 0 48 $3K_1$ {Fullerene, {48, 146}}
3 0 48 $3K_1$ {Fullerene, {48, 147}}
3 0 48 $3K_1$ {Fullerene, {48, 148}}
3 0 48 $3K_1$ {Fullerene, {48, 149}}
3 0 48 $3K_1$ {Fullerene, {48, 150}}
3 0 48 $3K_1$ {Fullerene, {48, 151}}
3 0 48 $3K_1$ {Fullerene, {48, 152}}
3 0 48 $3K_1$ {Fullerene, {48, 153}}
3 0 48 $3K_1$ {Fullerene, {48, 154}}
3 0 48 $3K_1$ {Fullerene, {48, 155}}
3 0 48 $3K_1$ {Fullerene, {48, 156}}
3 0 48 $3K_1$ {Fullerene, {48, 157}}
3 0 48 $3K_1$ {Fullerene, {48, 158}}
3 0 48 $3K_1$ {Fullerene, {48, 159}}
3 0 48 $3K_1$ {Fullerene, {48, 160}}
3 0 48 $3K_1$ {Fullerene, {48, 161}}
3 0 48 $3K_1$ {Fullerene, {48, 162}}
3 0 48 $3K_1$ {Fullerene, {48, 163}}
3 0 48 $3K_1$ {Fullerene, {48, 164}}
3 0 48 $3K_1$ {Fullerene, {48, 165}}
3 0 48 $3K_1$ {Fullerene, {48, 166}}
3 0 48 $3K_1$ {Fullerene, {48, 167}}
3 0 48 $3K_1$ {Fullerene, {48, 168}}
3 0 48 $3K_1$ {Fullerene, {48, 169}}
3 0 48 $3K_1$ {Fullerene, {48, 170}}
3 0 48 $3K_1$ {Fullerene, {48, 171}}
3 0 48 $3K_1$ {Fullerene, {48, 172}}
3 0 48 $3K_1$ {Fullerene, {48, 173}}
3 0 48 $3K_1$ {Fullerene, {48, 174}}
3 0 48 $3K_1$ {Fullerene, {48, 175}}
3 0 48 $3K_1$ {Fullerene, {48, 176}}
3 0 48 $3K_1$ {Fullerene, {48, 177}}
3 0 48 $3K_1$ {Fullerene, {48, 178}}
3 0 48 $3K_1$ {Fullerene, {48, 179}}
3 0 48 $3K_1$ {Fullerene, {48, 180}}
3 0 48 $3K_1$ {Fullerene, {48, 181}}
3 0 48 $3K_1$ {Fullerene, {48, 182}}
3 0 48 $3K_1$ {Fullerene, {48, 183}}
3 0 48 $3K_1$ {Fullerene, {48, 184}}
3 0 48 $3K_1$ {Fullerene, {48, 185}}
3 0 48 $3K_1$ {Fullerene, {48, 186}}
3 0 48 $3K_1$ {Fullerene, {48, 187}}
3 0 48 $3K_1$ {Fullerene, {48, 188}}
3 0 48 $3K_1$ {Fullerene, {48, 189}}
3 0 48 $3K_1$ {Fullerene, {48, 190}}
3 0 48 $3K_1$ {Fullerene, {48, 191}}
3 0 48 $3K_1$ {Fullerene, {48, 192}}
3 0 48 $3K_1$ {Fullerene, {48, 193}}
3 0 48 $3K_1$ {Fullerene, {48, 194}}
3 0 48 $3K_1$ {Fullerene, {48, 195}}
3 0 48 $3K_1$ {Fullerene, {48, 196}}
3 0 48 $3K_1$ {Fullerene, {48, 197}}
3 0 48 $3K_1$ {Fullerene, {48, 198}}
3 0 48 $3K_1$ {Fullerene, {48, 199}}
3 0 48 $3K_1$ GreatRhombicuboctahedralGraph
3 0 48 $3K_1$ {Prism, 24}
3 0 50 $3K_1$ {CubicNonhamiltonian, {50, 1}}
3 0 50 $3K_1$ {CubicNonhamiltonian, {50, 2}}
3 0 50 $3K_1$ {CubicNonhamiltonian, {50, 3}}
3 0 50 $3K_1$ {Fullerene, {50, 1}}
3 0 50 $3K_1$ {Fullerene, {50, 2}}
3 0 50 $3K_1$ {Fullerene, {50, 3}}
3 0 50 $3K_1$ {Fullerene, {50, 4}}
3 0 50 $3K_1$ {Fullerene, {50, 5}}
3 0 50 $3K_1$ {Fullerene, {50, 6}}
3 0 50 $3K_1$ {Fullerene, {50, 7}}
3 0 50 $3K_1$ {Fullerene, {50, 8}}
3 0 50 $3K_1$ {Fullerene, {50, 9}}
3 0 50 $3K_1$ {Fullerene, {50, 10}}
3 0 50 $3K_1$ {Fullerene, {50, 11}}
3 0 50 $3K_1$ {Fullerene, {50, 12}}
3 0 50 $3K_1$ {Fullerene, {50, 13}}
3 0 50 $3K_1$ {Fullerene, {50, 14}}
3 0 50 $3K_1$ {Fullerene, {50, 15}}
3 0 50 $3K_1$ {Fullerene, {50, 16}}
3 0 50 $3K_1$ {Fullerene, {50, 17}}
3 0 50 $3K_1$ {Fullerene, {50, 18}}
3 0 50 $3K_1$ {Fullerene, {50, 19}}
3 0 50 $3K_1$ {Fullerene, {50, 20}}
3 0 50 $3K_1$ {Fullerene, {50, 21}}
3 0 50 $3K_1$ {Fullerene, {50, 22}}
3 0 50 $3K_1$ {Fullerene, {50, 23}}
3 0 50 $3K_1$ {Fullerene, {50, 24}}
3 0 50 $3K_1$ {Fullerene, {50, 25}}
3 0 50 $3K_1$ {Fullerene, {50, 26}}
3 0 50 $3K_1$ {Fullerene, {50, 27}}
3 0 50 $3K_1$ {Fullerene, {50, 28}}
3 0 50 $3K_1$ {Fullerene, {50, 29}}
3 0 50 $3K_1$ {Fullerene, {50, 30}}
3 0 50 $3K_1$ {Fullerene, {50, 31}}
3 0 50 $3K_1$ {Fullerene, {50, 32}}
3 0 50 $3K_1$ {Fullerene, {50, 33}}
3 0 50 $3K_1$ {Fullerene, {50, 34}}
3 0 50 $3K_1$ {Fullerene, {50, 35}}
3 0 50 $3K_1$ {Fullerene, {50, 36}}
3 0 50 $3K_1$ {Fullerene, {50, 37}}
3 0 50 $3K_1$ {Fullerene, {50, 38}}
3 0 50 $3K_1$ {Fullerene, {50, 39}}
3 0 50 $3K_1$ {Fullerene, {50, 40}}
3 0 50 $3K_1$ {Fullerene, {50, 41}}
3 0 50 $3K_1$ {Fullerene, {50, 42}}
3 0 50 $3K_1$ {Fullerene, {50, 43}}
3 0 50 $3K_1$ {Fullerene, {50, 44}}
3 0 50 $3K_1$ {Fullerene, {50, 45}}
3 0 50 $3K_1$ {Fullerene, {50, 46}}
3 0 50 $3K_1$ {Fullerene, {50, 47}}
3 0 50 $3K_1$ {Fullerene, {50, 48}}
3 0 50 $3K_1$ {Fullerene, {50, 49}}
3 0 50 $3K_1$ {Fullerene, {50, 50}}
3 0 50 $3K_1$ {Fullerene, {50, 51}}
3 0 50 $3K_1$ {Fullerene, {50, 52}}
3 0 50 $3K_1$ {Fullerene, {50, 53}}
3 0 50 $3K_1$ {Fullerene, {50, 54}}
3 0 50 $3K_1$ {Fullerene, {50, 55}}
3 0 50 $3K_1$ {Fullerene, {50, 56}}
3 0 50 $3K_1$ {Fullerene, {50, 57}}
3 0 50 $3K_1$ {Fullerene, {50, 58}}
3 0 50 $3K_1$ {Fullerene, {50, 59}}
3 0 50 $3K_1$ {Fullerene, {50, 60}}
3 0 50 $3K_1$ {Fullerene, {50, 61}}
3 0 50 $3K_1$ {Fullerene, {50, 62}}
3 0 50 $3K_1$ {Fullerene, {50, 63}}
3 0 50 $3K_1$ {Fullerene, {50, 64}}
3 0 50 $3K_1$ {Fullerene, {50, 65}}
3 0 50 $3K_1$ {Fullerene, {50, 66}}
3 0 50 $3K_1$ {Fullerene, {50, 67}}
3 0 50 $3K_1$ {Fullerene, {50, 68}}
3 0 50 $3K_1$ {Fullerene, {50, 69}}
3 0 50 $3K_1$ {Fullerene, {50, 70}}
3 0 50 $3K_1$ {Fullerene, {50, 71}}
3 0 50 $3K_1$ {Fullerene, {50, 72}}
3 0 50 $3K_1$ {Fullerene, {50, 73}}
3 0 50 $3K_1$ {Fullerene, {50, 74}}
3 0 50 $3K_1$ {Fullerene, {50, 75}}
3 0 50 $3K_1$ {Fullerene, {50, 76}}
3 0 50 $3K_1$ {Fullerene, {50, 77}}
3 0 50 $3K_1$ {Fullerene, {50, 78}}
3 0 50 $3K_1$ {Fullerene, {50, 79}}
3 0 50 $3K_1$ {Fullerene, {50, 80}}
3 0 50 $3K_1$ {Fullerene, {50, 81}}
3 0 50 $3K_1$ {Fullerene, {50, 82}}
3 0 50 $3K_1$ {Fullerene, {50, 83}}
3 0 50 $3K_1$ {Fullerene, {50, 84}}
3 0 50 $3K_1$ {Fullerene, {50, 85}}
3 0 50 $3K_1$ {Fullerene, {50, 86}}
3 0 50 $3K_1$ {Fullerene, {50, 87}}
3 0 50 $3K_1$ {Fullerene, {50, 88}}
3 0 50 $3K_1$ {Fullerene, {50, 89}}
3 0 50 $3K_1$ {Fullerene, {50, 90}}
3 0 50 $3K_1$ {Fullerene, {50, 91}}
3 0 50 $3K_1$ {Fullerene, {50, 92}}
3 0 50 $3K_1$ {Fullerene, {50, 93}}
3 0 50 $3K_1$ {Fullerene, {50, 94}}
3 0 50 $3K_1$ {Fullerene, {50, 95}}
3 0 50 $3K_1$ {Fullerene, {50, 96}}
3 0 50 $3K_1$ {Fullerene, {50, 97}}
3 0 50 $3K_1$ {Fullerene, {50, 98}}
3 0 50 $3K_1$ {Fullerene, {50, 99}}
3 0 50 $3K_1$ {Fullerene, {50, 100}}
3 0 50 $3K_1$ {Fullerene, {50, 101}}
3 0 50 $3K_1$ {Fullerene, {50, 102}}
3 0 50 $3K_1$ {Fullerene, {50, 103}}
3 0 50 $3K_1$ {Fullerene, {50, 104}}
3 0 50 $3K_1$ {Fullerene, {50, 105}}
3 0 50 $3K_1$ {Fullerene, {50, 106}}
3 0 50 $3K_1$ {Fullerene, {50, 107}}
3 0 50 $3K_1$ {Fullerene, {50, 108}}
3 0 50 $3K_1$ {Fullerene, {50, 109}}
3 0 50 $3K_1$ {Fullerene, {50, 110}}
3 0 50 $3K_1$ {Fullerene, {50, 111}}
3 0 50 $3K_1$ {Fullerene, {50, 112}}
3 0 50 $3K_1$ {Fullerene, {50, 113}}
3 0 50 $3K_1$ {Fullerene, {50, 114}}
3 0 50 $3K_1$ {Fullerene, {50, 115}}
3 0 50 $3K_1$ {Fullerene, {50, 116}}
3 0 50 $3K_1$ {Fullerene, {50, 117}}
3 0 50 $3K_1$ {Fullerene, {50, 118}}
3 0 50 $3K_1$ {Fullerene, {50, 119}}
3 0 50 $3K_1$ {Fullerene, {50, 120}}
3 0 50 $3K_1$ {Fullerene, {50, 121}}
3 0 50 $3K_1$ {Fullerene, {50, 122}}
3 0 50 $3K_1$ {Fullerene, {50, 123}}
3 0 50 $3K_1$ {Fullerene, {50, 124}}
3 0 50 $3K_1$ {Fullerene, {50, 125}}
3 0 50 $3K_1$ {Fullerene, {50, 126}}
3 0 50 $3K_1$ {Fullerene, {50, 127}}
3 0 50 $3K_1$ {Fullerene, {50, 128}}
3 0 50 $3K_1$ {Fullerene, {50, 129}}
3 0 50 $3K_1$ {Fullerene, {50, 130}}
3 0 50 $3K_1$ {Fullerene, {50, 131}}
3 0 50 $3K_1$ {Fullerene, {50, 132}}
3 0 50 $3K_1$ {Fullerene, {50, 133}}
3 0 50 $3K_1$ {Fullerene, {50, 134}}
3 0 50 $3K_1$ {Fullerene, {50, 135}}
3 0 50 $3K_1$ {Fullerene, {50, 136}}
3 0 50 $3K_1$ {Fullerene, {50, 137}}
3 0 50 $3K_1$ {Fullerene, {50, 138}}
3 0 50 $3K_1$ {Fullerene, {50, 139}}
3 0 50 $3K_1$ {Fullerene, {50, 140}}
3 0 50 $3K_1$ {Fullerene, {50, 141}}
3 0 50 $3K_1$ {Fullerene, {50, 142}}
3 0 50 $3K_1$ {Fullerene, {50, 143}}
3 0 50 $3K_1$ {Fullerene, {50, 144}}
3 0 50 $3K_1$ {Fullerene, {50, 145}}
3 0 50 $3K_1$ {Fullerene, {50, 146}}
3 0 50 $3K_1$ {Fullerene, {50, 147}}
3 0 50 $3K_1$ {Fullerene, {50, 148}}
3 0 50 $3K_1$ {Fullerene, {50, 149}}
3 0 50 $3K_1$ {Fullerene, {50, 150}}
3 0 50 $3K_1$ {Fullerene, {50, 151}}
3 0 50 $3K_1$ {Fullerene, {50, 152}}
3 0 50 $3K_1$ {Fullerene, {50, 153}}
3 0 50 $3K_1$ {Fullerene, {50, 154}}
3 0 50 $3K_1$ {Fullerene, {50, 155}}
3 0 50 $3K_1$ {Fullerene, {50, 156}}
3 0 50 $3K_1$ {Fullerene, {50, 157}}
3 0 50 $3K_1$ {Fullerene, {50, 158}}
3 0 50 $3K_1$ {Fullerene, {50, 159}}
3 0 50 $3K_1$ {Fullerene, {50, 160}}
3 0 50 $3K_1$ {Fullerene, {50, 161}}
3 0 50 $3K_1$ {Fullerene, {50, 162}}
3 0 50 $3K_1$ {Fullerene, {50, 163}}
3 0 50 $3K_1$ {Fullerene, {50, 164}}
3 0 50 $3K_1$ {Fullerene, {50, 165}}
3 0 50 $3K_1$ {Fullerene, {50, 166}}
3 0 50 $3K_1$ {Fullerene, {50, 167}}
3 0 50 $3K_1$ {Fullerene, {50, 168}}
3 0 50 $3K_1$ {Fullerene, {50, 169}}
3 0 50 $3K_1$ {Fullerene, {50, 170}}
3 0 50 $3K_1$ {Fullerene, {50, 171}}
3 0 50 $3K_1$ {Fullerene, {50, 172}}
3 0 50 $3K_1$ {Fullerene, {50, 173}}
3 0 50 $3K_1$ {Fullerene, {50, 174}}
3 0 50 $3K_1$ {Fullerene, {50, 175}}
3 0 50 $3K_1$ {Fullerene, {50, 176}}
3 0 50 $3K_1$ {Fullerene, {50, 177}}
3 0 50 $3K_1$ {Fullerene, {50, 178}}
3 0 50 $3K_1$ {Fullerene, {50, 179}}
3 0 50 $3K_1$ {Fullerene, {50, 180}}
3 0 50 $3K_1$ {Fullerene, {50, 181}}
3 0 50 $3K_1$ {Fullerene, {50, 182}}
3 0 50 $3K_1$ {Fullerene, {50, 183}}
3 0 50 $3K_1$ {Fullerene, {50, 184}}
3 0 50 $3K_1$ {Fullerene, {50, 185}}
3 0 50 $3K_1$ {Fullerene, {50, 186}}
3 0 50 $3K_1$ {Fullerene, {50, 187}}
3 0 50 $3K_1$ {Fullerene, {50, 188}}
3 0 50 $3K_1$ {Fullerene, {50, 189}}
3 0 50 $3K_1$ {Fullerene, {50, 190}}
3 0 50 $3K_1$ {Fullerene, {50, 191}}
3 0 50 $3K_1$ {Fullerene, {50, 192}}
3 0 50 $3K_1$ {Fullerene, {50, 193}}
3 0 50 $3K_1$ {Fullerene, {50, 194}}
3 0 50 $3K_1$ {Fullerene, {50, 195}}
3 0 50 $3K_1$ {Fullerene, {50, 196}}
3 0 50 $3K_1$ {Fullerene, {50, 197}}
3 0 50 $3K_1$ {Fullerene, {50, 198}}
3 0 50 $3K_1$ {Fullerene, {50, 199}}
3 0 50 $3K_1$ {Fullerene, {50, 200}}
3 0 50 $3K_1$ {Fullerene, {50, 201}}
3 0 50 $3K_1$ {Fullerene, {50, 202}}
3 0 50 $3K_1$ {Fullerene, {50, 203}}
3 0 50 $3K_1$ {Fullerene, {50, 204}}
3 0 50 $3K_1$ {Fullerene, {50, 205}}
3 0 50 $3K_1$ {Fullerene, {50, 206}}
3 0 50 $3K_1$ {Fullerene, {50, 207}}
3 0 50 $3K_1$ {Fullerene, {50, 208}}
3 0 50 $3K_1$ {Fullerene, {50, 209}}
3 0 50 $3K_1$ {Fullerene, {50, 210}}
3 0 50 $3K_1$ {Fullerene, {50, 211}}
3 0 50 $3K_1$ {Fullerene, {50, 212}}
3 0 50 $3K_1$ {Fullerene, {50, 213}}
3 0 50 $3K_1$ {Fullerene, {50, 214}}
3 0 50 $3K_1$ {Fullerene, {50, 215}}
3 0 50 $3K_1$ {Fullerene, {50, 216}}
3 0 50 $3K_1$ {Fullerene, {50, 217}}
3 0 50 $3K_1$ {Fullerene, {50, 218}}
3 0 50 $3K_1$ {Fullerene, {50, 219}}
3 0 50 $3K_1$ {Fullerene, {50, 220}}
3 0 50 $3K_1$ {Fullerene, {50, 221}}
3 0 50 $3K_1$ {Fullerene, {50, 222}}
3 0 50 $3K_1$ {Fullerene, {50, 223}}
3 0 50 $3K_1$ {Fullerene, {50, 224}}
3 0 50 $3K_1$ {Fullerene, {50, 225}}
3 0 50 $3K_1$ {Fullerene, {50, 226}}
3 0 50 $3K_1$ {Fullerene, {50, 227}}
3 0 50 $3K_1$ {Fullerene, {50, 228}}
3 0 50 $3K_1$ {Fullerene, {50, 229}}
3 0 50 $3K_1$ {Fullerene, {50, 230}}
3 0 50 $3K_1$ {Fullerene, {50, 231}}
3 0 50 $3K_1$ {Fullerene, {50, 232}}
3 0 50 $3K_1$ {Fullerene, {50, 233}}
3 0 50 $3K_1$ {Fullerene, {50, 234}}
3 0 50 $3K_1$ {Fullerene, {50, 235}}
3 0 50 $3K_1$ {Fullerene, {50, 236}}
3 0 50 $3K_1$ {Fullerene, {50, 237}}
3 0 50 $3K_1$ {Fullerene, {50, 238}}
3 0 50 $3K_1$ {Fullerene, {50, 239}}
3 0 50 $3K_1$ {Fullerene, {50, 240}}
3 0 50 $3K_1$ {Fullerene, {50, 241}}
3 0 50 $3K_1$ {Fullerene, {50, 242}}
3 0 50 $3K_1$ {Fullerene, {50, 243}}
3 0 50 $3K_1$ {Fullerene, {50, 244}}
3 0 50 $3K_1$ {Fullerene, {50, 245}}
3 0 50 $3K_1$ {Fullerene, {50, 246}}
3 0 50 $3K_1$ {Fullerene, {50, 247}}
3 0 50 $3K_1$ {Fullerene, {50, 248}}
3 0 50 $3K_1$ {Fullerene, {50, 249}}
3 0 50 $3K_1$ {Fullerene, {50, 250}}
3 0 50 $3K_1$ {Fullerene, {50, 251}}
3 0 50 $3K_1$ {Fullerene, {50, 252}}
3 0 50 $3K_1$ {Fullerene, {50, 253}}
3 0 50 $3K_1$ {Fullerene, {50, 254}}
3 0 50 $3K_1$ {Fullerene, {50, 255}}
3 0 50 $3K_1$ {Fullerene, {50, 256}}
3 0 50 $3K_1$ {Fullerene, {50, 257}}
3 0 50 $3K_1$ {Fullerene, {50, 258}}
3 0 50 $3K_1$ {Fullerene, {50, 259}}
3 0 50 $3K_1$ {Fullerene, {50, 260}}
3 0 50 $3K_1$ {Fullerene, {50, 261}}
3 0 50 $3K_1$ {Fullerene, {50, 262}}
3 0 50 $3K_1$ {Fullerene, {50, 263}}
3 0 50 $3K_1$ {Fullerene, {50, 264}}
3 0 50 $3K_1$ {Fullerene, {50, 265}}
3 0 50 $3K_1$ {Fullerene, {50, 266}}
3 0 50 $3K_1$ {Fullerene, {50, 267}}
3 0 50 $3K_1$ {Fullerene, {50, 268}}
3 0 50 $3K_1$ {Fullerene, {50, 269}}
3 0 50 $3K_1$ {Fullerene, {50, 270}}
3 0 50 $3K_1$ {Fullerene, {50, 271}}
3 0 50 $3K_1$ {Prism, 25}
3 0 52 $3K_1$ {CubicNonhamiltonian, {52, 1}}
3 0 52 $3K_1$ {CubicNonhamiltonian, {52, 2}}
3 0 52 $3K_1$ {CubicNonhamiltonian, {52, 3}}
3 0 52 $3K_1$ {CubicNonhamiltonian, {52, 4}}
3 0 52 $3K_1$ {CubicNonhamiltonian, {52, 5}}
3 0 52 $3K_1$ {CubicNonhamiltonian, {52, 6}}
3 0 54 $3K_1$ {Cubic, {54, 1}}
3 0 56 $3K_1$ {Cubic, {56, 2}}
3 0 60 $3K_1$ {Fullerene, {60, 1}}
3 0 60 $3K_1$ TruncatedIcosahedralGraph
3 0 70 $3K_1$ ArayaWienerGraph70
3 0 70 $3K_1$ {Fullerene, {70, 4085}}
3 0 80 $3K_1$ ChamferedDodecahedralGraph
3 0 88 $3K_1$ ArayaWienerGraph88
3 0 94 $3K_1$ ThomassenGraph94
3 0 120 $3K_1$ GreatRhombicosidodecahedralGraph
3 0 162 $3K_1$ WaltherGraph162
3 0 180 $3K_1$ TruncatedPentakisDodecahedralGraph
3 1 6 {Prism, 3}
3 1 12 {Cubic, {12, 26}}
3 1 12 TruncatedTetrahedralGraph
3 1 18 TruncatedTriangularPrismGraph
3 1 24 TruncatedCubicalGraph
3 1 60 TruncatedDodecahedralGraph
3 3 4 TetrahedralGraph
4 1 24 {JohnsonSkeleton, 37}
4 1 24 SmallRhombicuboctahedralGraph
4 1 30 {JohnsonSkeleton, 38}
4 1 30 {JohnsonSkeleton, 39}
4 1 60 {JohnsonSkeleton, 72}
4 1 60 {JohnsonSkeleton, 73}
4 1 60 {JohnsonSkeleton, 74}
4 1 60 {JohnsonSkeleton, 75}
4 1 60 SmallRhombicosidodecahedralGraph
4 2 12 CuboctahedralGraph
4 2 12 False {JohnsonSkeleton, 27}
4 2 30 IcosidodecahedralGraph
4 2 30 False {JohnsonSkeleton, 34}
4 2 36 TruncatedOctahedralLineGraph
4 2 72 GreatRhombicuboctahedralLineGraph
4 2 90 TruncatedIcosahedralLineGraph
4 2 180 GreatRhombicosidodecahedralLineGraph
4 3 8 {Antiprism, 4}
4 3 10 {Antiprism, 5}
4 3 12 {Antiprism, 6}
4 3 14 {Antiprism, 7}
4 3 16 {Antiprism, 8}
4 3 18 {Antiprism, 9}
4 3 20 {Antiprism, 10}
4 3 22 {Antiprism, 11}
4 3 24 {Antiprism, 12}
4 3 26 {Antiprism, 13}
4 3 28 {Antiprism, 14}
4 3 30 {Antiprism, 15}
4 3 32 {Antiprism, 16}
4 3 34 {Antiprism, 17}
4 3 36 {Antiprism, 18}
4 3 38 {Antiprism, 19}
4 3 40 {Antiprism, 20}
4 3 42 {Antiprism, 21}
4 3 44 {Antiprism, 22}
4 3 46 {Antiprism, 23}
4 3 48 {Antiprism, 24}
4 3 50 {Antiprism, 25}
4 4 6 OctahedralGraph
5 4 24 SnubCubicalGraph
5 4 60 SnubDodecahedralGraph
5 5 12 IcosahedralGraph