 |
0 |
0 |
1 |
$0K_1$ |
SingletonGraph |
 |
1 |
0 |
2 |
$1K_1$ |
{Path, 2} |
 |
2 |
0 |
4 |
$2K_1$ |
SquareGraph |
 |
2 |
0 |
5 |
$2K_1$ |
{Cycle, 5} |
 |
2 |
0 |
6 |
$2K_1$ |
{Cycle, 6} |
 |
2 |
0 |
7 |
$2K_1$ |
{Cycle, 7} |
 |
2 |
0 |
8 |
$2K_1$ |
{Cycle, 8} |
 |
2 |
0 |
9 |
$2K_1$ |
{Cycle, 9} |
 |
2 |
0 |
10 |
$2K_1$ |
{Cycle, 10} |
 |
2 |
0 |
11 |
$2K_1$ |
{Cycle, 11} |
 |
2 |
0 |
12 |
$2K_1$ |
{Cycle, 12} |
 |
2 |
0 |
13 |
$2K_1$ |
{Cycle, 13} |
 |
2 |
0 |
14 |
$2K_1$ |
{Cycle, 14} |
 |
2 |
0 |
15 |
$2K_1$ |
{Cycle, 15} |
 |
2 |
0 |
16 |
$2K_1$ |
{Cycle, 16} |
 |
2 |
0 |
17 |
$2K_1$ |
{Cycle, 17} |
 |
2 |
0 |
18 |
$2K_1$ |
{Cycle, 18} |
 |
2 |
0 |
19 |
$2K_1$ |
{Cycle, 19} |
 |
2 |
0 |
20 |
$2K_1$ |
{Cycle, 20} |
 |
2 |
0 |
21 |
$2K_1$ |
{Cycle, 21} |
 |
2 |
0 |
22 |
$2K_1$ |
{Cycle, 22} |
 |
2 |
0 |
23 |
$2K_1$ |
{Cycle, 23} |
 |
2 |
0 |
24 |
$2K_1$ |
{Cycle, 24} |
 |
2 |
0 |
25 |
$2K_1$ |
{Cycle, 25} |
 |
2 |
0 |
26 |
$2K_1$ |
{Cycle, 26} |
 |
2 |
0 |
27 |
$2K_1$ |
{Cycle, 27} |
 |
2 |
0 |
28 |
$2K_1$ |
{Cycle, 28} |
 |
2 |
0 |
29 |
$2K_1$ |
{Cycle, 29} |
 |
2 |
0 |
30 |
$2K_1$ |
{Cycle, 30} |
 |
2 |
1 |
3 |
 |
TriangleGraph |
 |
3 |
0 |
8 |
$3K_1$ |
CubicalGraph |
 |
3 |
0 |
10 |
$3K_1$ |
{Prism, 5} |
 |
3 |
0 |
12 |
$3K_1$ |
{CubicPolyhedral, 4} |
 |
3 |
0 |
12 |
$3K_1$ |
{Prism, 6} |
 |
3 |
0 |
14 |
$3K_1$ |
{CubicPolyhedral, 5} |
 |
3 |
0 |
14 |
$3K_1$ |
{CubicPolyhedral, 6} |
 |
3 |
0 |
14 |
$3K_1$ |
{CubicPolyhedral, 7} |
 |
3 |
0 |
14 |
$3K_1$ |
{CubicPolyhedral, 9} |
 |
3 |
0 |
14 |
$3K_1$ |
{Prism, 7} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 10} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 11} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 13} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 14} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 15} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 16} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 17} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 18} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 19} |
 |
3 |
0 |
16 |
$3K_1$ |
{CubicPolyhedral, 20} |
 |
3 |
0 |
16 |
$3K_1$ |
{GeneralizedPetersen, {8, 2}} |
 |
3 |
0 |
16 |
$3K_1$ |
{Prism, 8} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 22} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 23} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 24} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 25} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 26} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 27} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 28} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 29} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 30} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 31} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 32} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 33} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 34} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 35} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 36} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 37} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 38} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 39} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 40} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 41} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 42} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 43} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 44} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 45} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 46} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 47} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 48} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 49} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 50} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 51} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 52} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 53} |
 |
3 |
0 |
18 |
$3K_1$ |
{CubicPolyhedral, 54} |
 |
3 |
0 |
18 |
$3K_1$ |
{Prism, 9} |
 |
3 |
0 |
20 |
$3K_1$ |
DodecahedralGraph |
 |
3 |
0 |
20 |
$3K_1$ |
{Prism, 10} |
 |
3 |
0 |
22 |
$3K_1$ |
{Prism, 11} |
 |
3 |
0 |
24 |
$3K_1$ |
{Cubic, {24, 1}} |
 |
3 |
0 |
24 |
$3K_1$ |
{Cubic, {24, 3}} |
 |
3 |
0 |
24 |
$3K_1$ |
{GeneralizedPetersen, {12, 2}} |
 |
3 |
0 |
24 |
$3K_1$ |
{Prism, 12} |
 |
3 |
0 |
24 |
$3K_1$ |
TruncatedOctahedralGraph |
 |
3 |
0 |
26 |
$3K_1$ |
{Fullerene, {26, 1}} |
 |
3 |
0 |
26 |
$3K_1$ |
{Prism, 13} |
 |
3 |
0 |
28 |
$3K_1$ |
{Fullerene, {28, 1}} |
 |
3 |
0 |
28 |
$3K_1$ |
{Fullerene, {28, 2}} |
 |
3 |
0 |
28 |
$3K_1$ |
{GeneralizedPetersen, {14, 2}} |
 |
3 |
0 |
28 |
$3K_1$ |
{Prism, 14} |
 |
3 |
0 |
30 |
$3K_1$ |
{Fullerene, {30, 1}} |
 |
3 |
0 |
30 |
$3K_1$ |
{Fullerene, {30, 2}} |
 |
3 |
0 |
30 |
$3K_1$ |
{Fullerene, {30, 3}} |
 |
3 |
0 |
30 |
$3K_1$ |
{Prism, 15} |
 |
3 |
0 |
32 |
$3K_1$ |
ChamferedCubicalGraph |
 |
3 |
0 |
32 |
$3K_1$ |
{Fullerene, {32, 1}} |
 |
3 |
0 |
32 |
$3K_1$ |
{Fullerene, {32, 2}} |
 |
3 |
0 |
32 |
$3K_1$ |
{Fullerene, {32, 3}} |
 |
3 |
0 |
32 |
$3K_1$ |
{Fullerene, {32, 4}} |
 |
3 |
0 |
32 |
$3K_1$ |
{Fullerene, {32, 5}} |
 |
3 |
0 |
32 |
$3K_1$ |
{Fullerene, {32, 6}} |
 |
3 |
0 |
32 |
$3K_1$ |
{GeneralizedPetersen, {16, 2}} |
 |
3 |
0 |
32 |
$3K_1$ |
{Prism, 16} |
 |
3 |
0 |
34 |
$3K_1$ |
{Fullerene, {34, 1}} |
 |
3 |
0 |
34 |
$3K_1$ |
{Fullerene, {34, 2}} |
 |
3 |
0 |
34 |
$3K_1$ |
{Fullerene, {34, 3}} |
 |
3 |
0 |
34 |
$3K_1$ |
{Fullerene, {34, 4}} |
 |
3 |
0 |
34 |
$3K_1$ |
{Fullerene, {34, 5}} |
 |
3 |
0 |
34 |
$3K_1$ |
{Fullerene, {34, 6}} |
 |
3 |
0 |
34 |
$3K_1$ |
{Prism, 17} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 1}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 2}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 3}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 4}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 5}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 6}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 7}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 8}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 9}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 10}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 11}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 12}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 13}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 14}} |
 |
3 |
0 |
36 |
$3K_1$ |
{Fullerene, {36, 15}} |
 |
3 |
0 |
36 |
$3K_1$ |
{GeneralizedPetersen, {18, 2}} |
 |
3 |
0 |
36 |
$3K_1$ |
JabulaniSkeleton |
 |
3 |
0 |
36 |
$3K_1$ |
{Prism, 18} |
 |
3 |
0 |
38 |
$3K_1$ |
BarnetteBosakLederbergGraph |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 1}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 2}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 3}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 4}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 5}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 6}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 7}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 8}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 9}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 10}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 11}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 12}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 13}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 14}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 15}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 16}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Fullerene, {38, 17}} |
 |
3 |
0 |
38 |
$3K_1$ |
{Prism, 19} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 1}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 2}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 3}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 4}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 5}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 6}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 7}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 8}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 9}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 10}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 11}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 12}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 13}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 14}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 15}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 16}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 17}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 18}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 19}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 20}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 21}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 22}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 23}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 24}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 25}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 26}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 27}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 28}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 29}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 30}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 31}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 32}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 33}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 34}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 35}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 36}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 37}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 38}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 39}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Fullerene, {40, 40}} |
 |
3 |
0 |
40 |
$3K_1$ |
{GeneralizedPetersen, {20, 2}} |
 |
3 |
0 |
40 |
$3K_1$ |
{Prism, 20} |
 |
3 |
0 |
42 |
$3K_1$ |
{Cubic, {42, 4}} |
 |
3 |
0 |
42 |
$3K_1$ |
{CubicNonhamiltonian, {42, 3}} |
 |
3 |
0 |
42 |
$3K_1$ |
FaulknerYoungerGraph42 |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 1}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 2}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 3}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 4}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 5}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 6}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 7}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 8}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 9}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 10}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 11}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 12}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 13}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 14}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 15}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 16}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 17}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 18}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 19}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 20}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 21}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 22}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 23}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 24}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 25}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 26}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 27}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 28}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 29}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 30}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 31}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 32}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 33}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 34}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 35}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 36}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 37}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 38}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 39}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 40}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 41}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 42}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 43}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 44}} |
 |
3 |
0 |
42 |
$3K_1$ |
{Fullerene, {42, 45}} |
 |
3 |
0 |
42 |
$3K_1$ |
GrinbergGraph42 |
 |
3 |
0 |
42 |
$3K_1$ |
{Prism, 21} |
 |
3 |
0 |
44 |
$3K_1$ |
FaulknerYoungerGraph44 |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 1}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 2}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 3}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 4}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 5}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 6}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 7}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 8}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 9}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 10}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 11}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 12}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 13}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 14}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 15}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 16}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 17}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 18}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 19}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 20}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 21}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 22}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 23}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 24}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 25}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 26}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 27}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 28}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 29}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 30}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 31}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 32}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 33}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 34}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 35}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 36}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 37}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 38}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 39}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 40}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 41}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 42}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 43}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 44}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 45}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 46}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 47}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 48}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 49}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 50}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 51}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 52}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 53}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 54}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 55}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 56}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 57}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 58}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 59}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 60}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 61}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 62}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 63}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 64}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 65}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 66}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 67}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 68}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 69}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 70}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 71}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 72}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 73}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 74}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 75}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 76}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 77}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 78}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 79}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 80}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 81}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 82}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 83}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 84}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 85}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 86}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 87}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 88}} |
 |
3 |
0 |
44 |
$3K_1$ |
{Fullerene, {44, 89}} |
 |
3 |
0 |
44 |
$3K_1$ |
GrinbergGraph44 |
 |
3 |
0 |
44 |
$3K_1$ |
{Prism, 22} |
 |
3 |
0 |
46 |
$3K_1$ |
{CubicNonhamiltonian, {46, 2}} |
 |
3 |
0 |
46 |
$3K_1$ |
{CubicNonhamiltonian, {46, 3}} |
 |
3 |
0 |
46 |
$3K_1$ |
{CubicNonhamiltonian, {46, 4}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 1}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 2}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 3}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 4}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 5}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 6}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 7}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 8}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 9}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 10}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 11}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 12}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 13}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 14}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 15}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 16}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 17}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 18}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 19}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 20}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 21}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 22}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 23}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 24}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 25}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 26}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 27}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 28}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 29}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 30}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 31}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 32}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 33}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 34}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 35}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 36}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 37}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 38}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 39}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 40}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 41}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 42}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 43}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 44}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 45}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 46}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 47}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 48}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 49}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 50}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 51}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 52}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 53}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 54}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 55}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 56}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 57}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 58}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 59}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 60}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 61}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 62}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 63}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 64}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 65}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 66}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 67}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 68}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 69}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 70}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 71}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 72}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 73}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 74}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 75}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 76}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 77}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 78}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 79}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 80}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 81}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 82}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 83}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 84}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 85}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 86}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 87}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 88}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 89}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 90}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 91}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 92}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 93}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 94}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 95}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 96}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 97}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 98}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 99}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 100}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 101}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 102}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 103}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 104}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 105}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 106}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 107}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 108}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 109}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 110}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 111}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 112}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 113}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 114}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 115}} |
 |
3 |
0 |
46 |
$3K_1$ |
{Fullerene, {46, 116}} |
 |
3 |
0 |
46 |
$3K_1$ |
GrinbergGraph46 |
 |
3 |
0 |
46 |
$3K_1$ |
{Prism, 23} |
 |
3 |
0 |
46 |
$3K_1$ |
TutteGraph |
 |
3 |
0 |
48 |
$3K_1$ |
{Cubic, {48, 1}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 1}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 2}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 3}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 4}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 5}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 6}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 7}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 8}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 9}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 10}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 11}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 12}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 13}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 14}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 15}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 16}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 17}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 18}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 19}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 20}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 21}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 22}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 23}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 24}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 25}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 26}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 27}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 28}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 29}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 30}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 31}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 32}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 33}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 34}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 35}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 36}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 37}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 38}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 39}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 40}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 41}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 42}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 43}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 44}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 45}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 46}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 47}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 48}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 49}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 50}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 51}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 52}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 53}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 54}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 55}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 56}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 57}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 58}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 59}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 60}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 61}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 62}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 63}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 64}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 65}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 66}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 67}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 68}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 69}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 70}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 71}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 72}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 73}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 74}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 75}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 76}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 77}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 78}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 79}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 80}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 81}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 82}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 83}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 84}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 85}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 86}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 87}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 88}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 89}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 90}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 91}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 92}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 93}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 94}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 95}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 96}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 97}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 98}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 99}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 100}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 101}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 102}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 103}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 104}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 105}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 106}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 107}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 108}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 109}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 110}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 111}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 112}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 113}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 114}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 115}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 116}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 117}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 118}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 119}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 120}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 121}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 122}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 123}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 124}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 125}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 126}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 127}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 128}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 129}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 130}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 131}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 132}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 133}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 134}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 135}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 136}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 137}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 138}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 139}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 140}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 141}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 142}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 143}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 144}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 145}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 146}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 147}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 148}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 149}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 150}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 151}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 152}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 153}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 154}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 155}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 156}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 157}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 158}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 159}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 160}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 161}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 162}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 163}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 164}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 165}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 166}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 167}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 168}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 169}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 170}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 171}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 172}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 173}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 174}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 175}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 176}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 177}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 178}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 179}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 180}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 181}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 182}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 183}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 184}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 185}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 186}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 187}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 188}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 189}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 190}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 191}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 192}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 193}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 194}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 195}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 196}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 197}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 198}} |
 |
3 |
0 |
48 |
$3K_1$ |
{Fullerene, {48, 199}} |
 |
3 |
0 |
48 |
$3K_1$ |
GreatRhombicuboctahedralGraph |
 |
3 |
0 |
48 |
$3K_1$ |
{Prism, 24} |
 |
3 |
0 |
50 |
$3K_1$ |
{CubicNonhamiltonian, {50, 1}} |
 |
3 |
0 |
50 |
$3K_1$ |
{CubicNonhamiltonian, {50, 2}} |
 |
3 |
0 |
50 |
$3K_1$ |
{CubicNonhamiltonian, {50, 3}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 1}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 2}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 3}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 4}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 5}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 6}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 7}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 8}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 9}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 10}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 11}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 12}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 13}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 14}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 15}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 16}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 17}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 18}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 19}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 20}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 21}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 22}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 23}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 24}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 25}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 26}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 27}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 28}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 29}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 30}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 31}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 32}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 33}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 34}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 35}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 36}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 37}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 38}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 39}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 40}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 41}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 42}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 43}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 44}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 45}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 46}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 47}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 48}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 49}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 50}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 51}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 52}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 53}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 54}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 55}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 56}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 57}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 58}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 59}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 60}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 61}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 62}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 63}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 64}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 65}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 66}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 67}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 68}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 69}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 70}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 71}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 72}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 73}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 74}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 75}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 76}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 77}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 78}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 79}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 80}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 81}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 82}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 83}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 84}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 85}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 86}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 87}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 88}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 89}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 90}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 91}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 92}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 93}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 94}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 95}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 96}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 97}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 98}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 99}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 100}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 101}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 102}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 103}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 104}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 105}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 106}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 107}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 108}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 109}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 110}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 111}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 112}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 113}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 114}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 115}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 116}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 117}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 118}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 119}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 120}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 121}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 122}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 123}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 124}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 125}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 126}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 127}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 128}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 129}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 130}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 131}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 132}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 133}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 134}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 135}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 136}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 137}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 138}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 139}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 140}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 141}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 142}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 143}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 144}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 145}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 146}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 147}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 148}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 149}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 150}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 151}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 152}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 153}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 154}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 155}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 156}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 157}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 158}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 159}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 160}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 161}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 162}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 163}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 164}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 165}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 166}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 167}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 168}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 169}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 170}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 171}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 172}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 173}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 174}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 175}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 176}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 177}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 178}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 179}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 180}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 181}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 182}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 183}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 184}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 185}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 186}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 187}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 188}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 189}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 190}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 191}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 192}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 193}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 194}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 195}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 196}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 197}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 198}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 199}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 200}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 201}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 202}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 203}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 204}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 205}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 206}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 207}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 208}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 209}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 210}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 211}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 212}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 213}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 214}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 215}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 216}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 217}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 218}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 219}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 220}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 221}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 222}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 223}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 224}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 225}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 226}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 227}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 228}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 229}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 230}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 231}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 232}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 233}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 234}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 235}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 236}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 237}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 238}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 239}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 240}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 241}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 242}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 243}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 244}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 245}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 246}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 247}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 248}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 249}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 250}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 251}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 252}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 253}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 254}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 255}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 256}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 257}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 258}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 259}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 260}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 261}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 262}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 263}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 264}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 265}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 266}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 267}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 268}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 269}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 270}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Fullerene, {50, 271}} |
 |
3 |
0 |
50 |
$3K_1$ |
{Prism, 25} |
 |
3 |
0 |
52 |
$3K_1$ |
{CubicNonhamiltonian, {52, 1}} |
 |
3 |
0 |
52 |
$3K_1$ |
{CubicNonhamiltonian, {52, 2}} |
 |
3 |
0 |
52 |
$3K_1$ |
{CubicNonhamiltonian, {52, 3}} |
 |
3 |
0 |
52 |
$3K_1$ |
{CubicNonhamiltonian, {52, 4}} |
 |
3 |
0 |
52 |
$3K_1$ |
{CubicNonhamiltonian, {52, 5}} |
 |
3 |
0 |
52 |
$3K_1$ |
{CubicNonhamiltonian, {52, 6}} |
 |
3 |
0 |
54 |
$3K_1$ |
{Cubic, {54, 1}} |
 |
3 |
0 |
56 |
$3K_1$ |
{Cubic, {56, 2}} |
 |
3 |
0 |
60 |
$3K_1$ |
{Fullerene, {60, 1}} |
 |
3 |
0 |
60 |
$3K_1$ |
TruncatedIcosahedralGraph |
 |
3 |
0 |
70 |
$3K_1$ |
ArayaWienerGraph70 |
 |
3 |
0 |
70 |
$3K_1$ |
{Fullerene, {70, 4085}} |
 |
3 |
0 |
80 |
$3K_1$ |
ChamferedDodecahedralGraph |
 |
3 |
0 |
88 |
$3K_1$ |
ArayaWienerGraph88 |
 |
3 |
0 |
94 |
$3K_1$ |
ThomassenGraph94 |
 |
3 |
0 |
120 |
$3K_1$ |
GreatRhombicosidodecahedralGraph |
 |
3 |
0 |
162 |
$3K_1$ |
WaltherGraph162 |
 |
3 |
0 |
180 |
$3K_1$ |
TruncatedPentakisDodecahedralGraph |
 |
3 |
1 |
6 |
 |
{Prism, 3} |
 |
3 |
1 |
12 |
 |
{Cubic, {12, 26}} |
 |
3 |
1 |
12 |
 |
TruncatedTetrahedralGraph |
 |
3 |
1 |
18 |
 |
TruncatedTriangularPrismGraph |
 |
3 |
1 |
24 |
 |
TruncatedCubicalGraph |
 |
3 |
1 |
60 |
 |
TruncatedDodecahedralGraph |
 |
3 |
3 |
4 |
 |
TetrahedralGraph |
 |
4 |
1 |
24 |
 |
{JohnsonSkeleton, 37} |
 |
4 |
1 |
24 |
 |
SmallRhombicuboctahedralGraph |
 |
4 |
1 |
30 |
 |
{JohnsonSkeleton, 38} |
 |
4 |
1 |
30 |
 |
{JohnsonSkeleton, 39} |
 |
4 |
1 |
60 |
 |
{JohnsonSkeleton, 72} |
 |
4 |
1 |
60 |
 |
{JohnsonSkeleton, 73} |
 |
4 |
1 |
60 |
 |
{JohnsonSkeleton, 74} |
 |
4 |
1 |
60 |
 |
{JohnsonSkeleton, 75} |
 |
4 |
1 |
60 |
 |
SmallRhombicosidodecahedralGraph |
 |
4 |
2 |
12 |
 |
CuboctahedralGraph |
 |
4 |
2 |
12 |
False |
{JohnsonSkeleton, 27} |
 |
4 |
2 |
30 |
 |
IcosidodecahedralGraph |
 |
4 |
2 |
30 |
False |
{JohnsonSkeleton, 34} |
 |
4 |
2 |
36 |
 |
TruncatedOctahedralLineGraph |
 |
4 |
2 |
72 |
 |
GreatRhombicuboctahedralLineGraph |
 |
4 |
2 |
90 |
 |
TruncatedIcosahedralLineGraph |
 |
4 |
2 |
180 |
 |
GreatRhombicosidodecahedralLineGraph |
 |
4 |
3 |
8 |
 |
{Antiprism, 4} |
 |
4 |
3 |
10 |
 |
{Antiprism, 5} |
 |
4 |
3 |
12 |
 |
{Antiprism, 6} |
 |
4 |
3 |
14 |
 |
{Antiprism, 7} |
 |
4 |
3 |
16 |
 |
{Antiprism, 8} |
 |
4 |
3 |
18 |
 |
{Antiprism, 9} |
 |
4 |
3 |
20 |
 |
{Antiprism, 10} |
 |
4 |
3 |
22 |
 |
{Antiprism, 11} |
 |
4 |
3 |
24 |
 |
{Antiprism, 12} |
 |
4 |
3 |
26 |
 |
{Antiprism, 13} |
 |
4 |
3 |
28 |
 |
{Antiprism, 14} |
 |
4 |
3 |
30 |
 |
{Antiprism, 15} |
 |
4 |
3 |
32 |
 |
{Antiprism, 16} |
 |
4 |
3 |
34 |
 |
{Antiprism, 17} |
 |
4 |
3 |
36 |
 |
{Antiprism, 18} |
 |
4 |
3 |
38 |
 |
{Antiprism, 19} |
 |
4 |
3 |
40 |
 |
{Antiprism, 20} |
 |
4 |
3 |
42 |
 |
{Antiprism, 21} |
 |
4 |
3 |
44 |
 |
{Antiprism, 22} |
 |
4 |
3 |
46 |
 |
{Antiprism, 23} |
 |
4 |
3 |
48 |
 |
{Antiprism, 24} |
 |
4 |
3 |
50 |
 |
{Antiprism, 25} |
 |
4 |
4 |
6 |
 |
OctahedralGraph |
 |
5 |
4 |
24 |
 |
SnubCubicalGraph |
 |
5 |
4 |
60 |
 |
SnubDodecahedralGraph |
 |
5 |
5 |
12 |
 |
IcosahedralGraph |