Searchable database of $(r,c)$-graphs for $c > 0$

graph r

c

n

constant link?

$\chi$

class

2 1 3 3 TriangleGraph
3 1 6 3 {Prism, 3}
3 1 12 3 {Cubic, {12, 26}}
3 1 12 3 TruncatedTetrahedralGraph
3 1 18 3 {CubicTransitive, 23}
3 1 18 3 TruncatedTriangularPrismGraph
3 1 24 3 {Cubic, {24, 5}}
3 1 24 3 TruncatedCubicalGraph
3 1 30 3 TriangleReplacedPetersenGraph
3 1 36 3 {Cubic, {36, 2}}
3 1 60 3 TruncatedDodecahedralGraph
3 1 78 3 {Cubic, {78, 1}}
3 1 84 3 TriangleReplacedCoxeterGraph
3 3 4 4 TetrahedralGraph
4 1 9 3 {Circulant, {9, {1, 3}}}
4 1 12 3 {Circulant, {12, {1, 4}}}
4 1 12 3 {Circulant, {12, {3, 4}}}
4 1 12 3 {Quartic, {12, 2}}
4 1 12 3 {Quartic, {12, 11}}
4 1 12 3 {Quartic, {12, 19}}
4 1 12 3 {Quartic, {12, 20}}
4 1 12 3 {QuarticTransitive, 17}
4 1 12 3 {RegularNonplanarDiameter, {4, 2, 12, 18}}
4 1 15 3 {Circulant, {15, {1, 5}}}
4 1 15 3 {Circulant, {15, {3, 5}}}
4 1 15 4 {Quartic, {15, 4}}
4 1 18 3 {Circulant, {18, {1, 6}}}
4 1 18 3 {QuarticTransitive, 59}
4 1 18 3 {TorusGrid, {3, 6}}
4 1 21 3 {Circulant, {21, {3, 7}}}
4 1 21 4 {BracedHeptagon, {42, 1}}
4 1 24 3 {Circulant, {24, {3, 8}}}
4 1 24 3 {JohnsonSkeleton, 37}
4 1 24 3 SmallRhombicuboctahedralGraph
4 1 27 3 {Quartic, {27, 1}}
4 1 27 3 {TorusGrid, {3, 9}}
4 1 30 3 {Circulant, {30, {3, 10}}}
4 1 30 3 {JohnsonSkeleton, 38}
4 1 30 3 {JohnsonSkeleton, 39}
4 1 60 3 DodecicosahedralGraph
4 1 60 3 {JohnsonSkeleton, 72}
4 1 60 3 {JohnsonSkeleton, 73}
4 1 60 3 {JohnsonSkeleton, 74}
4 1 60 3 {JohnsonSkeleton, 75}
4 1 60 3 {PermutationStar, {5, 3}}
4 1 60 3 SmallRhombicosidodecahedralGraph
4 2 9 False 3 {Quartic, {9, 11}}
4 2 9 3 {GeneralizedQuadrangle, {2, 1}}
4 2 12 False 3 {JohnsonSkeleton, 27}
4 2 12 False 3 {Quartic, {12, 13}}
4 2 12 False 3 {RegularNonplanarDiameter, {4, 2, 12, 1}}
4 2 12 3 CuboctahedralGraph
4 2 15 4 PetersenLineGraph
4 2 21 3 {GeneralizedHexagon, {2, 1}}
4 2 24 3 MoebiusKantorLineGraph
4 2 27 3 PappusLineGraph
4 2 30 False 3 {JohnsonSkeleton, 34}
4 2 30 3 DesarguesLineGraph
4 2 30 3 IcosidodecahedralGraph
4 2 36 3 TruncatedOctahedralLineGraph
4 2 42 3 CoxeterLineGraph
4 2 45 3 {GeneralizedOctagon, {2, 1}}
4 2 72 3 GreatRhombicuboctahedralLineGraph
4 2 90 3 TruncatedIcosahedralLineGraph
4 2 180 3 GreatRhombicosidodecahedralLineGraph
4 2 189 3 {GeneralizedDodecagon, {2, 1}}
4 3 7 4 {Circulant, {7, {1, 2}}}
4 3 8 4 {Antiprism, 4}
4 3 8 4 {Rook, {2, 4}}
4 3 9 3 {Circulant, {9, {1, 2}}}
4 3 10 4 {Antiprism, 5}
4 3 11 4 {Circulant, {11, {1, 2}}}
4 3 12 3 {Antiprism, 6}
4 3 12 4 {QuarticTransitive, 19}
4 3 13 4 {Circulant, {13, {1, 2}}}
4 3 14 4 {Antiprism, 7}
4 3 15 3 {Circulant, {15, {1, 2}}}
4 3 16 4 {Antiprism, 8}
4 3 16 4 {QuarticTransitive, 50}
4 3 17 4 {Circulant, {17, {1, 2}}}
4 3 18 3 {Antiprism, 9}
4 3 19 4 {Circulant, {19, {1, 2}}}
4 3 20 4 {Antiprism, 10}
4 3 20 4 {PermutationStar, {5, 2}}
4 3 22 4 {Antiprism, 11}
4 3 24 3 {Antiprism, 12}
4 3 26 4 {Antiprism, 13}
4 3 28 4 {Antiprism, 14}
4 3 30 3 {Antiprism, 15}
4 3 32 4 {Antiprism, 16}
4 3 34 4 {Antiprism, 17}
4 3 36 3 {Antiprism, 18}
4 3 38 4 {Antiprism, 19}
4 3 40 4 {Antiprism, 20}
4 3 42 3 {Antiprism, 21}
4 3 44 4 {Antiprism, 22}
4 3 46 4 {Antiprism, 23}
4 3 48 3 {Antiprism, 24}
4 3 50 4 {Antiprism, 25}
4 3 60 4 TetrahedronReplacedPetersenLineGraph
4 3 168 4 TetrahedronReplacedCoxeterLineGraph
4 4 6 3 OctahedralGraph
4 6 5 5 PentatopeGraph
5 1 12 3 {Circulant, {12, {1, 4, 6}}}
5 1 18 3 {Circulant, {18, {1, 6, 9}}}
5 1 18 3 {Circulant, {18, {2, 6, 9}}}
5 1 18 3 GraphCartesianProductOfK33AndK3
5 1 360 3 {PermutationStar, {6, 4}}
5 2 12 4 {VertexTransitive, {12, 27}}
5 2 18 4 {NoncayleyTransitive, {18, 1}}
5 3 10 4 {Circulant, {10, {1, 2, 5}}}
5 3 12 3 {VertexTransitive, {12, 30}}
5 3 12 4 {Circulant, {12, {1, 2, 6}}}
5 3 12 4 {Circulant, {12, {1, 3, 6}}}
5 3 12 4 {Circulant, {12, {2, 3, 6}}}
5 3 14 4 {Circulant, {14, {1, 2, 7}}}
5 3 14 4 {Circulant, {14, {2, 4, 7}}}
5 3 14 4 {VertexTransitive, {14, 16}}
5 3 16 4 {Circulant, {16, {1, 2, 8}}}
5 3 16 4 {Circulant, {16, {1, 4, 8}}}
5 3 16 4 {NoncayleyTransitive, {16, 2}}
5 3 16 4 {ZeroTwoNonbipartite, {5, 3}}
5 3 18 3 {Circulant, {18, {2, 4, 9}}}
5 3 18 4 {Circulant, {18, {1, 2, 9}}}
5 3 20 4 {Circulant, {20, {1, 2, 10}}}
5 3 20 4 {Circulant, {20, {1, 5, 10}}}
5 3 20 4 {Circulant, {20, {2, 5, 10}}}
5 3 20 4 {Circulant, {20, {4, 5, 10}}}
5 3 20 4 {NoncayleyTransitive, {20, 10}}
5 3 20 4 {NoncayleyTransitive, {20, 11}}
5 3 26 4 {NoncayleyTransitive, {26, 3}}
5 3 28 4 {NoncayleyTransitive, {28, 4}}
5 3 60 4 SnubDodecadodecahedralGraph
5 3 120 4 {PermutationStar, {6, 3}}
5 4 12 3 {VertexTransitive, {12, 28}}
5 4 12 3 {VertexTransitive, {12, 32}}
5 4 12 4 {Rook, {3, 4}}
5 4 24 3 SnubCubicalGraph
5 4 60 4 SnubDodecahedralGraph
5 5 12 4 IcosahedralGraph
5 6 8 4 {Circulant, {8, {1, 2, 4}}}
5 6 8 4 {Circulant, {8, {1, 3, 4}}}
5 6 10 5 {Circulant, {10, {1, 4, 5}}}
5 6 10 5 {Rook, {2, 5}}
5 6 12 4 {Circulant, {12, {1, 5, 6}}}
5 6 14 5 {Circulant, {14, {1, 6, 7}}}
5 6 16 4 {Circulant, {16, {1, 7, 8}}}
5 6 18 5 {Circulant, {18, {1, 8, 9}}}
5 6 20 4 {Circulant, {20, {1, 9, 10}}}
5 6 22 5 {Circulant, {22, {1, 10, 11}}}
5 6 24 4 {Circulant, {24, {1, 11, 12}}}
5 6 30 5 {PermutationStar, {6, 2}}
5 10 6 6 {Complete, 6}
6 1 15 3 {Circulant, {15, {1, 3, 5}}}
6 1 18 3 {Circulant, {18, {1, 4, 6}}}
6 1 18 3 {Circulant, {18, {1, 6, 8}}}
6 2 63 4 {UnitDistance, {63, 1}}
6 3 13 4 {Circulant, {13, {1, 2, 5}}}
6 3 14 4 {Circulant, {14, {1, 2, 5}}}
6 3 14 4 {Circulant, {14, {1, 4, 6}}}
6 3 15 4 {Circulant, {15, {1, 2, 6}}}
6 3 15 4 {GeneralizedQuadrangle, {2, 2}}
6 3 16 4 {Circulant, {16, {1, 2, 5}}}
6 3 16 4 {Circulant, {16, {1, 2, 6}}}
6 3 16 4 {Circulant, {16, {1, 4, 6}}}
6 3 16 4 {NoncayleyTransitive, {16, 3}}
6 3 17 4 {Circulant, {17, {1, 2, 5}}}
6 3 17 4 {Circulant, {17, {1, 2, 7}}}
6 3 17 5 {Circulant, {17, {1, 2, 6}}}
6 3 18 3 {Circulant, {18, {1, 2, 5}}}
6 3 18 3 {Circulant, {18, {1, 2, 7}}}
6 3 18 3 {Circulant, {18, {1, 4, 8}}}
6 3 18 3 {Circulant, {18, {2, 3, 4}}}
6 3 19 4 {Circulant, {19, {1, 2, 5}}}
6 3 19 4 {Circulant, {19, {1, 2, 6}}}
6 3 19 4 {Circulant, {19, {1, 2, 7}}}
6 3 19 4 {Circulant, {19, {1, 2, 8}}}
6 3 20 4 {Circulant, {20, {1, 2, 5}}}
6 3 20 4 {Circulant, {20, {1, 2, 6}}}
6 3 20 4 {Circulant, {20, {1, 2, 7}}}
6 3 20 4 {Circulant, {20, {1, 2, 8}}}
6 3 20 4 {Circulant, {20, {1, 6, 8}}}
6 3 20 4 {Circulant, {20, {2, 4, 5}}}
6 3 20 4 DitrigonalIcosidodecahedralGraph
6 3 20 4 {NoncayleyTransitive, {20, 13}}
6 3 20 4 {NoncayleyTransitive, {20, 15}}
6 3 20 4 {NoncayleyTransitive, {20, 16}}
6 3 24 3 {ArcTransitive, {24, 9}}
6 3 26 4 {NoncayleyTransitive, {26, 5}}
6 3 27 3 GrayConfigurationMengerDual
6 3 27 3 {Hamming, {3, 3}}
6 3 28 4 {NoncayleyTransitive, {28, 5}}
6 3 28 4 {NoncayleyTransitive, {28, 7}}
6 3 28 4 {NoncayleyTransitive, {28, 8}}
6 3 32 4 {ZeroTwoNonbipartite, {6, 10}}
6 3 45 4 HalvedFosterGraph
6 3 60 3 {Arrangement, {5, 3}}
6 3 63 4 {GeneralizedHexagonAndDualPointGraph, {{2, 2}, 1}}
6 3 63 4 {GeneralizedHexagonAndDualPointGraph, {{2, 2}, 2}}
6 4 12 3 {Circulant, {12, {2, 3, 4}}}
6 4 15 3 {Circulant, {15, {1, 2, 5}}}
6 4 18 3 {Circulant, {18, {1, 3, 6}}}
6 4 18 3 {Circulant, {18, {2, 3, 6}}}
6 4 18 4 {Circulant, {18, {1, 2, 6}}}
6 4 24 3 {NoncayleyTransitive, {24, 6}}
6 4 60 3 GreatSnubDodecicosidodecahedralGraph
6 4 60 4 SnubIcosidodecadodecahedralGraph
6 5 12 4 {VertexTransitive, {12, 40}}
6 5 24 4 {NoncayleyTransitive, {24, 5}}
6 5 24 4 {ZeroTwoNonbipartite, {6, 7}}
6 5 60 4 SmallSnubIcosicosidodecahedralGraph
6 6 11 4 {Circulant, {11, {1, 2, 4}}}
6 6 12 3 {RookComplement, {3, 4}}
6 6 12 4 {VertexTransitive, {12, 47}}
6 6 12 4 {VertexTransitive, {12, 48}}
6 6 13 5 {Circulant, {13, {1, 2, 4}}}
6 6 13 5 {Paley, 13}
6 6 14 4 {Circulant, {14, {1, 2, 4}}}
6 6 14 4 {Circulant, {14, {1, 2, 6}}}
6 6 14 4 {Circulant, {14, {1, 3, 4}}}
6 6 14 5 {VertexTransitive, {14, 26}}
6 6 15 3 {Circulant, {15, {1, 2, 4}}}
6 6 15 4 {Circulant, {15, {1, 3, 4}}}
6 6 15 5 {Circulant, {15, {1, 3, 6}}}
6 6 16 4 {Circulant, {16, {1, 2, 4}}}
6 6 16 4 {Circulant, {16, {1, 2, 7}}}
6 6 16 4 {Circulant, {16, {1, 3, 4}}}
6 6 16 4 {KleinBottleTriangulation, {16, 1}}
6 6 16 4 {KleinBottleTriangulation, {16, 2}}
6 6 16 4 {Rook, {4, 4}}
6 6 16 4 ShrikhandeGraph
6 6 16 4 {TorusTriangulation, {16, 2}}
6 6 17 4 {Circulant, {17, {1, 2, 4}}}
6 6 17 5 {Circulant, {17, {1, 3, 4}}}
6 6 18 3 {Circulant, {18, {1, 2, 4}}}
6 6 18 3 {Circulant, {18, {1, 2, 8}}}
6 6 18 3 {Circulant, {18, {1, 4, 5}}}
6 6 18 5 {Circulant, {18, {1, 3, 4}}}
6 6 19 4 {Circulant, {19, {1, 2, 4}}}
6 6 19 4 {Circulant, {19, {1, 3, 4}}}
6 6 19 5 {Cyclotomic, 19}
6 6 20 4 {Arrangement, {5, 2}}
6 6 20 4 {Circulant, {20, {1, 2, 4}}}
6 6 20 4 {Circulant, {20, {1, 2, 9}}}
6 6 20 4 {Circulant, {20, {1, 3, 4}}}
6 6 20 4 {Circulant, {20, {1, 4, 5}}}
6 6 20 4 {Circulant, {20, {1, 5, 6}}}
6 6 20 4 {Circulant, {20, {1, 8, 9}}}
6 6 20 4 {KleinBottleTriangulation, {20, 2}}
6 6 20 4 {KleinBottleTriangulation, {20, 3}}
6 6 20 4 {NoncayleyTransitive, {20, 14}}
6 6 20 5 {Circulant, {20, {1, 4, 8}}}
6 6 20 5 {Circulant, {20, {4, 5, 8}}}
6 6 20 5 {KleinBottleTriangulation, {20, 4}}
6 6 20 5 {NoncayleyTransitive, {20, 18}}
6 6 21 3 {Circulant, {21, {1, 4, 5}}}
6 6 25 4 {ArcTransitive, {25, 3}}
6 6 26 5 {NoncayleyTransitive, {26, 6}}
6 6 27 3 {ArcTransitive, {27, 7}}
6 6 28 4 {ArcTransitive, {28, 6}}
6 6 28 4 {NoncayleyTransitive, {28, 6}}
6 6 28 4 {NoncayleyTransitive, {28, 9}}
6 6 31 4 {Circulant, {31, {1, 5, 6}}}
6 6 52 4 {GeneralizedHexagon, {3, 1}}
6 6 160 4 {GeneralizedOctagon, {3, 1}}
6 7 12 False 4 {Sextic, {12, 2}}
6 7 12 3 {Circulant, {12, {1, 2, 4}}}
6 7 12 3 {Circulant, {12, {1, 4, 5}}}
6 7 12 4 {Circulant, {12, {1, 3, 4}}}
6 7 12 4 {KleinBottleTriangulation, {12, 3}}
6 7 12 4 {VertexTransitive, {12, 45}}
6 7 15 3 {Circulant, {15, {1, 4, 5}}}
6 7 15 4 {Circulant, {15, {1, 5, 6}}}
6 7 15 4 {KleinBottleTriangulation, {15, 3}}
6 7 15 5 {Rook, {3, 5}}
6 7 18 3 {TorusTriangulation, {18, 2}}
6 7 18 4 {Circulant, {18, {1, 5, 6}}}
6 7 18 4 {KleinBottleTriangulation, {18, 2}}
6 7 24 4 CuboctahedralLineGraph
6 7 60 4 IcosidodecahedralLineGraph
6 8 12 4 OctahedralLineGraph
6 9 9 3 {CompleteTripartite, {3, 3, 3}}
6 9 10 False 5 {Sextic, {10, 3}}
6 9 10 False 5 {Sextic, {10, 10}}
6 9 10 False 5 {Sextic, {10, 13}}
6 9 10 5 {Circulant, {10, {1, 2, 3}}}
6 9 10 5 {Circulant, {10, {1, 2, 4}}}
6 9 10 5 {Triangular, 5}
6 9 11 False 6 {Sextic, {11, 12}}
6 9 11 6 {Circulant, {11, {1, 2, 3}}}
6 9 12 4 {Circulant, {12, {1, 2, 3}}}
6 9 13 5 {Circulant, {13, {1, 2, 3}}}
6 9 14 5 {Circulant, {14, {1, 2, 3}}}
6 9 15 5 {Circulant, {15, {1, 2, 3}}}
6 9 16 4 {Circulant, {16, {1, 2, 3}}}
6 9 17 5 {Circulant, {17, {1, 2, 3}}}
6 9 18 5 {Circulant, {18, {1, 2, 3}}}
6 9 19 5 {Circulant, {19, {1, 2, 3}}}
6 9 20 4 {Circulant, {20, {1, 2, 3}}}
6 10 9 False 5 {Sextic, {9, 1}}
6 10 9 5 {Circulant, {9, {1, 2, 3}}}
6 10 12 6 {Rook, {2, 6}}
6 10 48 6 K6ReplacedDoubledCubicalGraph
6 10 96 6 K6ReplacedDoubledMoebiusKantorGraph
6 12 8 4 SixteenCellGraph
6 15 7 7 {Complete, 7}
7 1 18 3 {Circulant, {18, {1, 4, 6, 9}}}
7 3 16 4 {Circulant, {16, {1, 2, 5, 8}}}
7 3 18 3 {Circulant, {18, {2, 3, 4, 9}}}
7 3 18 4 {Circulant, {18, {1, 2, 5, 9}}}
7 3 20 4 {Circulant, {20, {1, 2, 6, 10}}}
7 3 20 4 {Circulant, {20, {1, 2, 7, 10}}}
7 3 20 4 {Circulant, {20, {1, 3, 5, 10}}}
7 3 20 4 {Circulant, {20, {1, 5, 8, 10}}}
7 3 20 4 {Circulant, {20, {1, 6, 8, 10}}}
7 3 20 4 {Circulant, {20, {2, 5, 6, 10}}}
7 3 20 4 {NoncayleyTransitive, {20, 22}}
7 3 24 4 {NoncayleyTransitive, {24, 8}}
7 3 24 4 {NoncayleyTransitive, {24, 10}}
7 3 24 4 {NoncayleyTransitive, {24, 11}}
7 3 26 4 {NoncayleyTransitive, {26, 7}}
7 3 26 4 {NoncayleyTransitive, {26, 10}}
7 3 32 4 {ZeroTwoNonbipartite, {7, 17}}
7 3 32 4 {ZeroTwoNonbipartite, {7, 18}}
7 3 32 4 {ZeroTwoNonbipartite, {7, 19}}
7 3 32 4 {ZeroTwoNonbipartite, {7, 20}}
7 3 32 4 {ZeroTwoNonbipartite, {7, 21}}
7 3 32 4 {ZeroTwoNonbipartite, {7, 25}}
7 3 32 4 {ZeroTwoNonbipartite, {7, 26}}
7 3 40 4 {ZeroTwoNonbipartite, {7, 36}}
7 3 56 4 {ZeroTwoNonbipartite, {7, 49}}
7 3 64 4 {ZeroTwoNonbipartite, {7, 54}}
7 4 18 4 {Circulant, {18, {1, 2, 6, 9}}}
7 4 24 4 {Nuciferous, {24, 1}}
7 4 24 4 {Nuciferous, {24, 2}}
7 5 24 4 {NoncayleyTransitive, {24, 9}}
7 5 24 4 {ZeroTwoNonbipartite, {7, 1}}
7 5 24 4 {ZeroTwoNonbipartite, {7, 4}}
7 5 24 5 {ZeroTwoNonbipartite, {7, 2}}
7 5 24 5 {ZeroTwoNonbipartite, {7, 3}}
7 5 48 4 {ZeroTwoNonbipartite, {7, 46}}
7 6 14 4 {Circulant, {14, {1, 2, 4, 7}}}
7 6 16 4 {Circulant, {16, {1, 3, 5, 8}}}
7 6 16 4 {Circulant, {16, {1, 4, 6, 8}}}
7 6 18 5 {Circulant, {18, {1, 2, 4, 9}}}
7 6 18 5 {Circulant, {18, {1, 3, 4, 9}}}
7 6 18 5 {Circulant, {18, {1, 3, 8, 9}}}
7 6 20 4 {Circulant, {20, {1, 2, 4, 10}}}
7 6 20 4 {Circulant, {20, {1, 2, 5, 10}}}
7 6 20 4 {Circulant, {20, {1, 3, 4, 10}}}
7 6 20 4 {Circulant, {20, {1, 3, 7, 10}}}
7 6 20 4 {Circulant, {20, {1, 6, 9, 10}}}
7 6 20 4 {Circulant, {20, {2, 4, 5, 10}}}
7 6 20 4 {NoncayleyTransitive, {20, 21}}
7 6 20 5 {Circulant, {20, {1, 4, 6, 10}}}
7 6 20 5 {Circulant, {20, {1, 4, 8, 10}}}
7 6 20 5 {Circulant, {20, {1, 4, 9, 10}}}
7 6 24 4 {ZeroTwoNonbipartite, {7, 5}}
7 6 24 4 {ZeroTwoNonbipartite, {7, 6}}
7 6 26 5 {NoncayleyTransitive, {26, 8}}
7 6 26 5 {NoncayleyTransitive, {26, 9}}
7 6 26 5 {NoncayleyTransitive, {26, 11}}
7 6 26 5 {NoncayleyTransitive, {26, 12}}
7 6 32 4 {ZeroTwoNonbipartite, {7, 27}}
7 6 32 4 {ZeroTwoNonbipartite, {7, 28}}
7 7 18 4 {Circulant, {18, {1, 5, 6, 9}}}
7 7 18 5 {Circulant, {18, {1, 6, 8, 9}}}
7 7 24 4 KleinGraph24
7 9 12 4 {Circulant, {12, {1, 3, 5, 6}}}
7 9 14 4 {VertexTransitive, {14, 30}}
7 9 14 5 {Circulant, {14, {1, 2, 3, 7}}}
7 9 14 5 {Circulant, {14, {1, 2, 5, 7}}}
7 9 14 5 {Circulant, {14, {1, 4, 6, 7}}}
7 9 16 4 {Circulant, {16, {1, 2, 4, 8}}}
7 9 16 4 {Circulant, {16, {1, 2, 6, 8}}}
7 9 16 4 {Circulant, {16, {1, 3, 4, 8}}}
7 9 16 4 {NoncayleyTransitive, {16, 4}}
7 9 16 6 {Circulant, {16, {1, 2, 3, 8}}}
7 9 16 6 {Circulant, {16, {1, 4, 7, 8}}}
7 9 18 3 {Circulant, {18, {2, 4, 8, 9}}}
7 9 18 5 {Circulant, {18, {1, 2, 3, 9}}}
7 9 18 5 {Circulant, {18, {1, 2, 7, 9}}}
7 9 18 5 {Circulant, {18, {1, 4, 8, 9}}}
7 9 20 4 {Circulant, {20, {1, 2, 3, 10}}}
7 9 20 4 {Circulant, {20, {1, 4, 5, 10}}}
7 9 20 4 {Circulant, {20, {1, 5, 6, 10}}}
7 9 20 4 {Circulant, {20, {1, 5, 9, 10}}}
7 9 20 4 {NoncayleyTransitive, {20, 24}}
7 9 20 5 {Circulant, {20, {1, 2, 8, 10}}}
7 9 20 5 {Circulant, {20, {2, 5, 8, 10}}}
7 9 20 5 {NoncayleyTransitive, {20, 20}}
7 9 20 5 {NoncayleyTransitive, {20, 23}}
7 9 20 5 {NoncayleyTransitive, {20, 25}}
7 9 20 5 {NoncayleyTransitive, {20, 26}}
7 9 20 5 {Rook, {4, 5}}
7 9 26 5 {NoncayleyTransitive, {26, 13}}
7 9 28 4 {NoncayleyTransitive, {28, 10}}
7 10 12 3 {VertexTransitive, {12, 51}}
7 10 12 4 {Circulant, {12, {1, 3, 4, 6}}}
7 10 18 5 {Circulant, {18, {2, 4, 6, 9}}}
7 10 18 6 {Circulant, {18, {1, 3, 6, 9}}}
7 10 18 6 {Circulant, {18, {2, 3, 6, 9}}}
7 10 24 6 {NoncayleyTransitive, {24, 12}}
7 10 24 6 {NoncayleyTransitive, {24, 13}}
7 11 12 4 {VertexTransitive, {12, 54}}
7 11 18 6 {Rook, {3, 6}}
7 12 12 4 {Circulant, {12, {1, 2, 3, 6}}}
7 12 12 4 {Circulant, {12, {1, 2, 5, 6}}}
7 12 12 4 {VertexTransitive, {12, 55}}
7 12 14 5 {Circulant, {14, {1, 2, 6, 7}}}
7 12 14 5 {Circulant, {14, {1, 3, 4, 7}}}
7 12 16 6 {Circulant, {16, {1, 2, 7, 8}}}
7 12 18 5 {Circulant, {18, {1, 2, 8, 9}}}
7 12 18 5 {Circulant, {18, {1, 4, 5, 9}}}
7 12 20 4 {Circulant, {20, {1, 2, 9, 10}}}
7 12 20 5 {Circulant, {20, {1, 8, 9, 10}}}
7 13 12 6 {Circulant, {12, {1, 2, 4, 6}}}
7 13 12 6 {Circulant, {12, {1, 4, 5, 6}}}
7 13 12 6 {Circulant, {12, {2, 3, 4, 6}}}
7 13 12 6 {VertexTransitive, {12, 60}}
7 15 10 False 5 {Septic, {10, 1}}
7 15 10 5 {Circulant, {10, {1, 2, 4, 5}}}
7 15 10 6 {Circulant, {10, {1, 2, 3, 5}}}
7 15 14 7 {Rook, {2, 7}}
7 21 8 8 {Complete, 8}
8 3 19 4 {Circulant, {19, {1, 2, 5, 8}}}
8 3 20 4 {Circulant, {20, {1, 2, 5, 8}}}
8 3 24 4 {NoncayleyTransitive, {24, 16}}
8 3 24 4 {NoncayleyTransitive, {24, 17}}
8 3 24 4 {NoncayleyTransitive, {24, 18}}
8 3 24 4 {NoncayleyTransitive, {24, 19}}
8 3 26 5 {NoncayleyTransitive, {26, 14}}
8 4 18 3 {Circulant, {18, {1, 3, 6, 8}}}
8 4 24 3 {ArcTransitive, {24, 15}}
8 4 27 3 {ArcTransitive, {27, 9}}
8 4 27 3 {ArcTransitive, {27, 10}}
8 4 27 5 {GeneralizedQuadrangleMinusSpread, {{2, 4}, 1}}
8 4 27 5 {GeneralizedQuadrangleMinusSpread, {{2, 4}, 2}}
8 4 30 4 {ArcTransitive, {30, 10}}
8 4 63 5 {CompleteGraphSymplecticCover, {9, 7}}
8 4 81 3 {Hamming, {4, 3}}
8 4 360 3 {Arrangement, {6, 4}}
8 6 17 4 {Circulant, {17, {1, 2, 4, 7}}}
8 6 19 4 {Circulant, {19, {1, 2, 4, 7}}}
8 6 20 4 {Circulant, {20, {1, 2, 4, 7}}}
8 6 20 4 {Circulant, {20, {1, 2, 5, 9}}}
8 6 20 4 {Circulant, {20, {1, 2, 6, 9}}}
8 6 20 4 {Circulant, {20, {1, 3, 5, 8}}}
8 6 20 4 {Circulant, {20, {1, 5, 8, 9}}}
8 6 20 4 {NoncayleyTransitive, {20, 32}}
8 6 20 4 {NoncayleyTransitive, {20, 33}}
8 6 20 5 {Circulant, {20, {1, 3, 4, 9}}}
8 6 26 5 {NoncayleyTransitive, {26, 15}}
8 6 26 5 {NoncayleyTransitive, {26, 17}}
8 6 28 4 {NoncayleyTransitive, {28, 11}}
8 7 24 4 {NoncayleyTransitive, {24, 15}}
8 8 18 3 {EdgeTransitive, {18, 19}}
8 8 21 4 {ArcTransitive, {21, 7}}
8 8 24 3 {ArcTransitive, {24, 14}}
8 8 24 3 {ArcTransitive, {24, 17}}
8 8 24 5 {NoncayleyTransitive, {24, 14}}
8 8 30 4 {ArcTransitive, {30, 28}}
8 8 60 3 GreatDirhombicosidodecahedralGraph
8 9 16 4 {Circulant, {16, {1, 2, 4, 7}}}
8 9 17 5 {Circulant, {17, {1, 2, 6, 7}}}
8 9 18 3 {Circulant, {18, {1, 2, 4, 7}}}
8 9 18 3 {Circulant, {18, {1, 2, 5, 7}}}
8 9 18 3 {Circulant, {18, {2, 3, 4, 8}}}
8 9 18 5 {Circulant, {18, {1, 2, 3, 7}}}
8 9 18 5 {Circulant, {18, {1, 3, 4, 8}}}
8 9 19 4 {Circulant, {19, {1, 2, 4, 8}}}
8 9 19 4 {Circulant, {19, {1, 2, 5, 6}}}
8 9 19 5 {Circulant, {19, {1, 2, 3, 7}}}
8 9 19 5 {Circulant, {19, {1, 2, 6, 8}}}
8 9 19 5 {Circulant, {19, {1, 2, 7, 8}}}
8 9 20 4 {Circulant, {20, {1, 2, 3, 7}}}
8 9 20 4 {Circulant, {20, {1, 2, 5, 6}}}
8 9 20 4 {Circulant, {20, {1, 2, 5, 7}}}
8 9 20 4 {Circulant, {20, {1, 5, 6, 8}}}
8 9 20 5 {Circulant, {20, {1, 2, 3, 8}}}
8 9 20 5 {Circulant, {20, {1, 2, 4, 9}}}
8 9 20 5 {Circulant, {20, {1, 2, 7, 8}}}
8 9 20 5 {Circulant, {20, {1, 4, 6, 8}}}
8 9 20 5 {Circulant, {20, {1, 6, 8, 9}}}
8 9 20 5 {Circulant, {20, {2, 4, 5, 6}}}
8 9 20 5 {Circulant, {20, {2, 4, 5, 8}}}
8 9 20 5 {NoncayleyTransitive, {20, 28}}
8 9 20 5 {NoncayleyTransitive, {20, 30}}
8 9 26 5 {NoncayleyTransitive, {26, 18}}
8 9 26 5 {NoncayleyTransitive, {26, 19}}
8 10 15 4 {Circulant, {15, {1, 2, 5, 6}}}
8 10 18 4 {Circulant, {18, {1, 2, 5, 6}}}
8 10 18 5 {Circulant, {18, {1, 2, 6, 7}}}
8 10 18 5 {Circulant, {18, {1, 3, 4, 6}}}
8 10 18 5 {Circulant, {18, {1, 3, 5, 6}}}
8 10 18 5 {Circulant, {18, {1, 4, 6, 8}}}
8 10 24 6 {NoncayleyTransitive, {24, 20}}
8 11 18 5 {NoncayleyTransitive, {18, 2}}
8 12 14 4 {Circulant, {14, {1, 2, 5, 6}}}
8 12 15 3 {RookComplement, {3, 5}}
8 12 15 5 {Circulant, {15, {1, 2, 3, 7}}}
8 12 15 5 {Circulant, {15, {1, 3, 4, 6}}}
8 12 16 4 {Circulant, {16, {1, 2, 3, 6}}}
8 12 16 4 {Circulant, {16, {1, 2, 3, 7}}}
8 12 16 4 {Circulant, {16, {1, 2, 4, 5}}}
8 12 16 4 {Circulant, {16, {1, 2, 6, 7}}}
8 12 16 4 {Circulant, {16, {1, 3, 4, 5}}}
8 12 16 4 {NoncayleyTransitive, {16, 5}}
8 12 17 5 {Circulant, {17, {1, 2, 3, 6}}}
8 12 17 5 {Circulant, {17, {1, 2, 3, 7}}}
8 12 17 5 {Circulant, {17, {1, 2, 4, 5}}}
8 12 17 5 {Circulant, {17, {1, 3, 4, 5}}}
8 12 17 6 {Circulant, {17, {1, 2, 3, 8}}}
8 12 17 6 {Paley, 17}
8 12 18 3 {Circulant, {18, {1, 2, 4, 5}}}
8 12 18 3 {Circulant, {18, {1, 2, 4, 8}}}
8 12 18 3 {Circulant, {18, {1, 2, 7, 8}}}
8 12 18 5 {Circulant, {18, {1, 2, 3, 8}}}
8 12 18 5 {Circulant, {18, {1, 3, 4, 5}}}
8 12 19 4 {Circulant, {19, {1, 2, 4, 5}}}
8 12 19 5 {Circulant, {19, {1, 2, 3, 6}}}
8 12 19 5 {Circulant, {19, {1, 2, 3, 8}}}
8 12 19 5 {Circulant, {19, {1, 2, 3, 9}}}
8 12 19 5 {Circulant, {19, {1, 3, 4, 5}}}
8 12 20 4 {Circulant, {20, {1, 2, 3, 6}}}
8 12 20 4 {Circulant, {20, {1, 2, 3, 9}}}
8 12 20 4 {Circulant, {20, {1, 2, 4, 5}}}
8 12 20 4 {Circulant, {20, {1, 2, 8, 9}}}
8 12 20 4 {Circulant, {20, {1, 5, 6, 9}}}
8 12 20 5 {Circulant, {20, {1, 2, 4, 6}}}
8 12 20 5 {Circulant, {20, {1, 2, 4, 8}}}
8 12 20 5 {Circulant, {20, {1, 2, 6, 8}}}
8 12 20 5 {Circulant, {20, {1, 3, 4, 5}}}
8 12 20 5 {Circulant, {20, {1, 3, 4, 7}}}
8 12 20 5 {Circulant, {20, {1, 3, 4, 8}}}
8 12 20 5 {Circulant, {20, {1, 4, 5, 6}}}
8 12 20 5 {Circulant, {20, {1, 4, 5, 8}}}
8 12 20 5 {Circulant, {20, {1, 4, 5, 9}}}
8 12 20 5 {Circulant, {20, {1, 4, 8, 9}}}
8 12 20 5 {NoncayleyTransitive, {20, 27}}
8 12 21 5 {ArcTransitive, {21, 8}}
8 12 24 3 TwentyFourCellGraph
8 12 25 5 {Rook, {5, 5}}
8 12 26 5 {NoncayleyTransitive, {26, 16}}
8 12 30 5 {Arrangement, {6, 2}}
8 12 105 5 {GeneralizedHexagon, {4, 1}}
8 12 425 5 {GeneralizedOctagon, {4, 1}}
8 13 15 3 {Circulant, {15, {1, 2, 4, 5}}}
8 13 15 5 {Circulant, {15, {1, 3, 5, 6}}}
8 13 15 6 {Circulant, {15, {1, 3, 4, 5}}}
8 13 18 5 {Circulant, {18, {1, 2, 3, 6}}}
8 13 18 5 {Circulant, {18, {1, 2, 4, 6}}}
8 13 18 5 {Circulant, {18, {1, 2, 6, 8}}}
8 13 18 5 {Circulant, {18, {1, 4, 5, 6}}}
8 13 18 5 {Circulant, {18, {2, 3, 4, 6}}}
8 13 24 6 {NoncayleyTransitive, {24, 21}}
8 13 24 6 {NoncayleyTransitive, {24, 22}}
8 13 24 6 {Rook, {4, 6}}
8 14 30 5 IcosahedralLineGraph
8 15 13 5 {Circulant, {13, {1, 2, 3, 6}}}
8 15 14 5 {Circulant, {14, {1, 2, 3, 5}}}
8 15 14 5 {Circulant, {14, {1, 2, 3, 6}}}
8 15 14 5 {VertexTransitive, {14, 41}}
8 15 15 5 {Circulant, {15, {1, 2, 3, 6}}}
8 15 16 4 {Circulant, {16, {1, 2, 3, 5}}}
8 15 16 4 {Circulant, {16, {1, 2, 4, 6}}}
8 15 17 6 {Circulant, {17, {1, 2, 3, 5}}}
8 15 18 5 {Circulant, {18, {1, 2, 3, 5}}}
8 15 19 5 {Circulant, {19, {1, 2, 3, 5}}}
8 15 20 4 {Circulant, {20, {1, 2, 3, 5}}}
8 15 20 5 {NoncayleyTransitive, {20, 31}}
8 15 20 6 {NoncayleyTransitive, {20, 29}}
8 16 12 3 {CompleteTripartite, {4, 4, 4}}
8 16 15 5 {Circulant, {15, {1, 2, 3, 5}}}
8 16 15 5 {Triangular, 6}
8 16 21 7 {Rook, {3, 7}}
8 18 12 4 {Circulant, {12, {1, 2, 3, 5}}}
8 18 12 4 {VertexTransitive, {12, 64}}
8 18 13 7 {Circulant, {13, {1, 2, 3, 4}}}
8 18 13 7 {Circulant, {13, {1, 2, 3, 5}}}
8 18 14 7 {Circulant, {14, {1, 2, 3, 4}}}
8 18 14 7 {Circulant, {14, {1, 2, 4, 6}}}
8 18 15 5 {Circulant, {15, {1, 2, 3, 4}}}
8 18 16 6 {Circulant, {16, {1, 2, 3, 4}}}
8 18 17 6 {Circulant, {17, {1, 2, 3, 4}}}
8 18 18 6 {Circulant, {18, {1, 2, 3, 4}}}
8 18 19 7 {Circulant, {19, {1, 2, 3, 4}}}
8 18 20 5 {Circulant, {20, {1, 2, 3, 4}}}
8 19 12 6 {Circulant, {12, {1, 2, 3, 4}}}
8 19 12 6 {Circulant, {12, {1, 3, 4, 5}}}
8 19 12 6 {VertexTransitive, {12, 65}}
8 19 12 6 {VertexTransitive, {12, 67}}
8 19 15 8 {Circulant, {15, {1, 4, 5, 6}}}
8 19 18 6 {Circulant, {18, {1, 5, 6, 7}}}
8 21 11 False 6 {Octic, {11, 2}}
8 21 11 False 6 {Octic, {11, 3}}
8 21 11 6 {Circulant, {11, {1, 2, 3, 4}}}
8 21 16 8 {Rook, {2, 8}}
8 24 10 5 {CocktailParty, 5}
8 28 9 9 {Complete, 9}
9 6 20 4 {Circulant, {20, {1, 2, 4, 7, 10}}}
9 6 24 4 {NoncayleyTransitive, {24, 28}}
9 6 24 4 {NoncayleyTransitive, {24, 29}}
9 8 24 3 {NoncayleyTransitive, {24, 25}}
9 9 18 3 {Circulant, {18, {2, 3, 4, 8, 9}}}
9 9 20 4 {Circulant, {20, {1, 3, 5, 7, 10}}}
9 9 20 4 {Circulant, {20, {1, 3, 5, 8, 10}}}
9 9 20 4 {NoncayleyTransitive, {20, 39}}
9 9 24 4 {NoncayleyTransitive, {24, 30}}
9 9 26 5 {NoncayleyTransitive, {26, 23}}
9 9 26 6 {NoncayleyTransitive, {26, 25}}
9 9 28 5 {NoncayleyTransitive, {28, 13}}
9 9 28 5 {NoncayleyTransitive, {28, 14}}
9 9 64 4 {Doob, {1, 1}}
9 9 64 4 {Hamming, {3, 4}}
9 9 120 5 {Arrangement, {6, 3}}
9 10 18 4 {Circulant, {18, {1, 2, 5, 6, 9}}}
9 11 24 5 {NoncayleyTransitive, {24, 24}}
9 12 16 4 {Circulant, {16, {1, 3, 5, 7, 8}}}
9 12 20 4 {Circulant, {20, {1, 2, 3, 6, 10}}}
9 12 20 4 {Circulant, {20, {1, 2, 5, 6, 10}}}
9 12 20 4 {Circulant, {20, {1, 2, 5, 7, 10}}}
9 12 20 4 {Circulant, {20, {1, 2, 6, 9, 10}}}
9 12 20 4 {Circulant, {20, {1, 3, 7, 9, 10}}}
9 12 20 4 {Circulant, {20, {1, 5, 6, 8, 10}}}
9 12 20 5 {Circulant, {20, {1, 2, 5, 8, 10}}}
9 12 20 5 {Circulant, {20, {1, 3, 4, 8, 10}}}
9 12 20 5 {Circulant, {20, {1, 4, 6, 9, 10}}}
9 12 20 6 {Circulant, {20, {1, 3, 4, 9, 10}}}
9 12 20 6 {NoncayleyTransitive, {20, 34}}
9 12 26 5 {NoncayleyTransitive, {26, 21}}
9 12 26 5 {NoncayleyTransitive, {26, 22}}
9 12 26 6 {NoncayleyTransitive, {26, 26}}
9 12 28 5 {NoncayleyTransitive, {28, 12}}
9 12 28 5 {NoncayleyTransitive, {28, 16}}
9 13 18 5 {Circulant, {18, {1, 2, 4, 6, 9}}}
9 14 24 6 {NoncayleyTransitive, {24, 23}}
9 15 16 4 {Circulant, {16, {1, 2, 4, 5, 8}}}
9 15 18 5 {Circulant, {18, {1, 2, 3, 5, 9}}}
9 15 18 5 {Circulant, {18, {1, 2, 3, 7, 9}}}
9 15 18 5 {Circulant, {18, {1, 2, 4, 7, 9}}}
9 15 18 5 {Circulant, {18, {1, 2, 5, 7, 9}}}
9 15 18 6 {Circulant, {18, {1, 3, 4, 8, 9}}}
9 15 20 4 {Circulant, {20, {1, 2, 3, 7, 10}}}
9 15 20 4 {Circulant, {20, {1, 2, 4, 5, 10}}}
9 15 20 4 {Circulant, {20, {1, 2, 5, 9, 10}}}
9 15 20 5 {Circulant, {20, {1, 2, 7, 8, 10}}}
9 15 20 5 {Circulant, {20, {1, 3, 4, 5, 10}}}
9 15 20 5 {Circulant, {20, {1, 4, 5, 8, 10}}}
9 15 20 5 {Circulant, {20, {1, 4, 6, 8, 10}}}
9 15 20 5 {Circulant, {20, {1, 6, 8, 9, 10}}}
9 15 20 5 {NoncayleyTransitive, {20, 38}}
9 15 20 6 {Circulant, {20, {1, 2, 3, 8, 10}}}
9 15 20 6 {Circulant, {20, {1, 2, 4, 9, 10}}}
9 15 20 6 {Circulant, {20, {1, 5, 8, 9, 10}}}
9 15 20 6 {NoncayleyTransitive, {20, 35}}
9 15 20 6 {NoncayleyTransitive, {20, 36}}
9 15 26 5 {NoncayleyTransitive, {26, 24}}
9 15 26 6 {NoncayleyTransitive, {26, 20}}
9 15 28 5 {NoncayleyTransitive, {28, 15}}
9 15 28 5 {NoncayleyTransitive, {28, 17}}
9 15 96 4 Snub24CellGraph
9 16 18 5 {Circulant, {18, {1, 2, 6, 7, 9}}}
9 16 18 5 {Circulant, {18, {1, 4, 6, 8, 9}}}
9 16 18 6 {Circulant, {18, {1, 3, 4, 6, 9}}}
9 16 18 6 {Circulant, {18, {1, 3, 5, 6, 9}}}
9 16 18 6 {Circulant, {18, {1, 3, 6, 8, 9}}}
9 16 24 6 {NoncayleyTransitive, {24, 26}}
9 16 24 6 {NoncayleyTransitive, {24, 27}}
9 16 24 6 {NoncayleyTransitive, {24, 31}}
9 16 24 6 {NoncayleyTransitive, {24, 32}}
9 16 24 6 {NoncayleyTransitive, {24, 33}}
9 16 30 6 {Rook, {5, 6}}
9 17 18 6 {NoncayleyTransitive, {18, 3}}
9 18 16 4 {RookComplement, {4, 4}}
9 18 16 6 {Circulant, {16, {1, 2, 3, 6, 8}}}
9 18 16 6 {Circulant, {16, {1, 2, 3, 7, 8}}}
9 18 16 6 {Circulant, {16, {1, 2, 4, 7, 8}}}
9 18 16 6 ShrikhandeComplementGraph
9 18 18 5 {Circulant, {18, {1, 3, 4, 5, 9}}}
9 18 18 6 {Circulant, {18, {1, 2, 3, 4, 9}}}
9 18 18 6 {Circulant, {18, {1, 2, 3, 8, 9}}}
9 18 18 6 {Circulant, {18, {1, 2, 4, 5, 9}}}
9 18 18 6 {Circulant, {18, {1, 2, 4, 8, 9}}}
9 18 20 4 {Circulant, {20, {1, 2, 3, 5, 10}}}
9 18 20 4 {Circulant, {20, {1, 2, 3, 9, 10}}}
9 18 20 5 {Circulant, {20, {1, 2, 4, 8, 10}}}
9 18 20 5 {Circulant, {20, {1, 4, 8, 9, 10}}}
9 18 20 5 {Circulant, {20, {2, 4, 5, 8, 10}}}
9 18 20 6 {Circulant, {20, {1, 2, 4, 6, 10}}}
9 18 20 6 {Circulant, {20, {1, 2, 6, 8, 10}}}
9 18 20 6 {Circulant, {20, {1, 3, 4, 7, 10}}}
9 18 20 6 {Circulant, {20, {2, 4, 5, 6, 10}}}
9 18 20 6 {NoncayleyTransitive, {20, 37}}
9 18 20 6 {Tetrahedral, 6}
9 18 20 7 {Circulant, {20, {1, 2, 3, 4, 10}}}
9 18 26 7 {NoncayleyTransitive, {26, 27}}
9 18 28 7 {Rook, {4, 7}}
9 19 18 5 {Circulant, {18, {1, 2, 6, 8, 9}}}
9 19 18 6 {Circulant, {18, {1, 2, 3, 6, 9}}}
9 19 18 6 {Circulant, {18, {1, 4, 5, 6, 9}}}
9 19 18 6 {Circulant, {18, {1, 5, 6, 7, 9}}}
9 19 18 6 {Circulant, {18, {2, 3, 4, 6, 9}}}
9 21 14 5 {Circulant, {14, {1, 2, 3, 6, 7}}}
9 21 14 6 {Circulant, {14, {1, 2, 3, 5, 7}}}
9 21 16 6 {Circulant, {16, {1, 2, 3, 4, 8}}}
9 21 16 6 {Circulant, {16, {1, 2, 3, 5, 8}}}
9 21 16 6 {Circulant, {16, {1, 3, 4, 5, 8}}}
9 21 16 6 {NoncayleyTransitive, {16, 6}}
9 21 20 4 {Circulant, {20, {1, 5, 6, 9, 10}}}
9 21 20 5 {Circulant, {20, {1, 4, 5, 6, 10}}}
9 21 20 5 {NoncayleyTransitive, {20, 41}}
9 21 20 6 {Circulant, {20, {1, 4, 5, 9, 10}}}
9 22 24 8 {Rook, {3, 8}}
9 24 14 7 {Circulant, {14, {1, 2, 3, 4, 7}}}
9 24 14 7 {Circulant, {14, {1, 2, 4, 6, 7}}}
9 24 14 7 {Circulant, {14, {1, 2, 5, 6, 7}}}
9 24 14 7 {VertexTransitive, {14, 48}}
9 24 16 8 {Circulant, {16, {1, 2, 4, 6, 8}}}
9 24 16 8 {Circulant, {16, {1, 2, 6, 7, 8}}}
9 24 18 6 {Circulant, {18, {1, 2, 7, 8, 9}}}
9 24 20 7 {Circulant, {20, {1, 2, 8, 9, 10}}}
9 27 12 4 {CompleteKPartite, {3, 3, 3, 3}}
9 28 12 6 {Circulant, {12, {1, 2, 3, 4, 6}}}
9 28 12 6 {Circulant, {12, {1, 2, 4, 5, 6}}}
9 28 12 6 {Circulant, {12, {1, 3, 4, 5, 6}}}
9 28 18 9 {Rook, {2, 9}}
9 36 10 10 {Complete, 10}
10 5 27 6 {GeneralizedQuadrangle, {2, 4}}
10 5 243 3 {Hamming, {5, 3}}
10 5 315 4 HallJankoNearOctagon
10 6 26 5 {NoncayleyTransitive, {26, 34}}
10 12 20 4 {Circulant, {20, {1, 2, 5, 8, 9}}}
10 12 24 4 {NoncayleyTransitive, {24, 38}}
10 12 26 5 {NoncayleyTransitive, {26, 29}}
10 12 28 5 {NoncayleyTransitive, {28, 19}}
10 14 24 4 {NoncayleyTransitive, {24, 35}}
10 14 24 4 {NoncayleyTransitive, {24, 41}}
10 14 24 6 {NoncayleyTransitive, {24, 34}}
10 15 19 4 {Circulant, {19, {1, 2, 4, 5, 8}}}
10 15 20 5 {Circulant, {20, {1, 2, 3, 7, 8}}}
10 15 20 5 {Circulant, {20, {1, 2, 4, 6, 9}}}
10 15 20 5 {Circulant, {20, {1, 4, 6, 8, 9}}}
10 15 20 5 {NoncayleyTransitive, {20, 46}}
10 15 21 5 {Kneser, {7, 2}}
10 15 26 False 5 {Paulus, {26, 1}}
10 15 26 False 5 {Paulus, {26, 2}}
10 15 26 False 5 {Paulus, {26, 8}}
10 15 26 False 6 {Paulus, {26, 3}}
10 15 26 False 6 {Paulus, {26, 4}}
10 15 26 False 6 {Paulus, {26, 5}}
10 15 26 False 6 {Paulus, {26, 6}}
10 15 26 False 6 {Paulus, {26, 7}}
10 15 26 False 6 {Paulus, {26, 9}}
10 15 26 False 6 {Paulus, {26, 10}}
10 15 26 5 {NoncayleyTransitive, {26, 30}}
10 15 26 5 {NoncayleyTransitive, {26, 32}}
10 15 26 5 {NoncayleyTransitive, {26, 33}}
10 15 26 5 {NoncayleyTransitive, {26, 37}}
10 15 26 5 {NoncayleyTransitive, {26, 38}}
10 15 26 5 {NoncayleyTransitive, {26, 39}}
10 15 26 6 {NoncayleyTransitive, {26, 28}}
10 15 26 6 {NoncayleyTransitive, {26, 31}}
10 15 26 6 {NoncayleyTransitive, {26, 35}}
10 15 26 6 {NoncayleyTransitive, {26, 40}}
10 15 28 5 {NoncayleyTransitive, {28, 18}}
10 15 28 6 {NoncayleyTransitive, {28, 20}}
10 15 31 6 {Cyclotomic, 31}
10 15 63 5 ConwaySmithGraph
10 15 65 5 HallGraph
10 15 720 5 Rectified600CellGraph
10 17 24 5 {NoncayleyTransitive, {24, 37}}
10 17 24 6 {NoncayleyTransitive, {24, 36}}
10 18 19 5 {Circulant, {19, {1, 2, 3, 7, 8}}}
10 18 20 4 {Circulant, {20, {1, 2, 3, 5, 9}}}
10 18 20 4 {Circulant, {20, {1, 2, 3, 7, 9}}}
10 18 20 4 {Circulant, {20, {1, 2, 4, 5, 7}}}
10 18 20 4 {Circulant, {20, {1, 2, 5, 6, 9}}}
10 18 20 5 {Circulant, {20, {1, 2, 4, 5, 8}}}
10 18 20 5 {Circulant, {20, {1, 2, 4, 7, 8}}}
10 18 20 5 {Circulant, {20, {1, 2, 5, 6, 8}}}
10 18 20 5 {Circulant, {20, {1, 3, 4, 7, 9}}}
10 18 20 5 {NoncayleyTransitive, {20, 44}}
10 18 20 6 {Circulant, {20, {1, 3, 4, 5, 7}}}
10 18 20 6 {Circulant, {20, {1, 3, 4, 5, 9}}}
10 18 20 6 {NoncayleyTransitive, {20, 47}}
10 19 18 5 {Circulant, {18, {1, 2, 3, 6, 7}}}
10 19 18 5 {Circulant, {18, {1, 3, 4, 6, 8}}}
10 19 24 6 {NoncayleyTransitive, {24, 39}}
10 19 24 6 {NoncayleyTransitive, {24, 42}}
10 19 24 6 {NoncayleyTransitive, {24, 43}}
10 20 18 3 {RookComplement, {3, 6}}
10 20 24 4 {ArcTransitive, {24, 18}}
10 20 24 4 {NoncayleyTransitive, {24, 40}}
10 20 36 6 {Rook, {6, 6}}
10 20 186 6 {GeneralizedHexagon, {5, 1}}
10 21 17 5 {Circulant, {17, {1, 2, 3, 6, 7}}}
10 21 18 3 {Circulant, {18, {1, 2, 4, 5, 7}}}
10 21 18 3 {Circulant, {18, {1, 2, 4, 5, 8}}}
10 21 18 5 {Circulant, {18, {1, 2, 3, 5, 7}}}
10 21 19 5 {Circulant, {19, {1, 2, 3, 5, 9}}}
10 21 19 5 {Circulant, {19, {1, 2, 3, 6, 7}}}
10 21 19 5 {Circulant, {19, {1, 2, 3, 6, 8}}}
10 21 19 6 {Circulant, {19, {1, 2, 5, 6, 8}}}
10 21 19 7 {Circulant, {19, {1, 2, 3, 4, 9}}}
10 21 20 4 {Circulant, {20, {1, 2, 3, 5, 7}}}
10 21 20 4 {Circulant, {20, {1, 2, 3, 6, 7}}}
10 21 20 5 {Circulant, {20, {1, 2, 3, 4, 9}}}
10 21 20 5 {Circulant, {20, {1, 2, 3, 6, 8}}}
10 21 20 5 {Circulant, {20, {1, 2, 4, 5, 9}}}
10 21 20 5 {Circulant, {20, {1, 2, 4, 8, 9}}}
10 21 20 5 {Circulant, {20, {1, 2, 5, 7, 8}}}
10 21 20 5 {Circulant, {20, {1, 2, 6, 8, 9}}}
10 21 20 5 {Circulant, {20, {1, 4, 5, 6, 8}}}
10 21 20 5 {Circulant, {20, {1, 5, 6, 8, 9}}}
10 21 20 5 {NoncayleyTransitive, {20, 48}}
10 21 20 6 {Circulant, {20, {1, 2, 3, 5, 8}}}
10 21 20 6 {NoncayleyTransitive, {20, 42}}
10 21 20 6 {NoncayleyTransitive, {20, 43}}
10 21 35 7 {Rook, {5, 7}}
10 22 18 5 {Circulant, {18, {1, 2, 3, 6, 8}}}
10 22 18 5 {Circulant, {18, {1, 2, 4, 6, 7}}}
10 22 18 5 {Circulant, {18, {1, 3, 4, 5, 6}}}
10 22 18 6 {Circulant, {18, {1, 3, 5, 6, 7}}}
10 22 24 6 {NoncayleyTransitive, {24, 44}}
10 24 16 4 {Circulant, {16, {1, 2, 3, 5, 7}}}
10 24 16 4 {Circulant, {16, {1, 2, 4, 6, 7}}}
10 24 16 4 {Circulant, {16, {1, 3, 4, 5, 7}}}
10 24 17 6 {Circulant, {17, {1, 2, 3, 4, 8}}}
10 24 17 6 {Circulant, {17, {1, 2, 3, 5, 8}}}
10 24 18 5 {Circulant, {18, {1, 2, 3, 7, 8}}}
10 24 18 6 {Circulant, {18, {1, 2, 3, 4, 8}}}
10 24 19 5 {Circulant, {19, {1, 2, 3, 5, 6}}}
10 24 19 7 {Circulant, {19, {1, 2, 3, 4, 7}}}
10 24 19 7 {Circulant, {19, {1, 2, 3, 4, 8}}}
10 24 19 7 {Circulant, {19, {1, 2, 3, 5, 7}}}
10 24 19 7 {Circulant, {19, {1, 2, 3, 7, 9}}}
10 24 20 4 {Circulant, {20, {1, 2, 3, 5, 6}}}
10 24 20 5 {Circulant, {20, {1, 2, 3, 4, 7}}}
10 24 20 5 {Circulant, {20, {1, 2, 3, 4, 8}}}
10 24 20 5 {Circulant, {20, {1, 2, 3, 8, 9}}}
10 24 20 5 {Circulant, {20, {1, 2, 4, 5, 6}}}
10 24 20 5 {Circulant, {20, {1, 3, 4, 5, 8}}}
10 24 20 5 {Circulant, {20, {1, 3, 4, 7, 8}}}
10 24 20 5 {Circulant, {20, {1, 4, 5, 6, 9}}}
10 24 20 5 {Circulant, {20, {1, 4, 5, 8, 9}}}
10 24 20 5 {Circulant, {20, {2, 4, 5, 6, 8}}}
10 24 20 6 {NoncayleyTransitive, {20, 45}}
10 24 26 7 {NoncayleyTransitive, {26, 36}}
10 24 32 8 {Rook, {4, 8}}
10 25 15 3 {CompleteTripartite, {5, 5, 5}}
10 25 18 5 {Circulant, {18, {1, 2, 6, 7, 8}}}
10 25 18 6 {Circulant, {18, {1, 2, 3, 5, 6}}}
10 25 18 6 {Circulant, {18, {1, 2, 4, 5, 6}}}
10 25 21 7 {Triangular, 7}
10 27 16 4 {Circulant, {16, {1, 2, 3, 5, 6}}}
10 27 16 4 {NoncayleyTransitive, {16, 7}}
10 27 16 6 {Circulant, {16, {1, 2, 3, 4, 7}}}
10 27 17 6 {Circulant, {17, {1, 2, 3, 4, 6}}}
10 27 17 6 {Circulant, {17, {1, 2, 3, 4, 7}}}
10 27 17 6 {Circulant, {17, {1, 2, 3, 5, 6}}}
10 27 18 6 {Circulant, {18, {1, 2, 3, 4, 7}}}
10 27 19 7 {Circulant, {19, {1, 2, 3, 4, 6}}}
10 27 20 5 {Circulant, {20, {1, 2, 3, 4, 6}}}
10 27 20 5 {Circulant, {20, {1, 2, 4, 6, 8}}}
10 27 20 5 {NoncayleyTransitive, {20, 49}}
10 28 15 5 {Circulant, {15, {1, 2, 3, 5, 6}}}
10 28 18 6 {Circulant, {18, {1, 2, 3, 4, 6}}}
10 28 18 6 {Circulant, {18, {1, 2, 5, 6, 7}}}
10 29 15 6 {VertexTransitive, {15, 42}}
10 29 27 9 {Rook, {3, 9}}
10 30 15 5 {Circulant, {15, {1, 2, 3, 4, 6}}}
10 30 15 5 {Circulant, {15, {1, 2, 3, 4, 7}}}
10 30 16 8 {Circulant, {16, {1, 2, 3, 4, 5}}}
10 30 16 8 {Circulant, {16, {1, 2, 3, 4, 6}}}
10 30 16 8 {HalvedCube, 5}
10 30 17 9 {Circulant, {17, {1, 2, 3, 4, 5}}}
10 30 18 6 {Circulant, {18, {1, 2, 3, 4, 5}}}
10 30 19 7 {Circulant, {19, {1, 2, 3, 4, 5}}}
10 30 20 7 {Circulant, {20, {1, 2, 3, 4, 5}}}
10 31 15 8 {Circulant, {15, {1, 2, 3, 4, 5}}}
10 31 15 8 {Circulant, {15, {1, 2, 3, 5, 7}}}
10 31 15 8 {Circulant, {15, {1, 3, 4, 5, 6}}}
10 31 18 9 {Circulant, {18, {1, 2, 4, 6, 8}}}
10 31 18 9 {Circulant, {18, {2, 3, 4, 6, 8}}}
10 33 14 7 {Circulant, {14, {1, 2, 3, 4, 5}}}
10 33 14 7 {Circulant, {14, {1, 2, 3, 4, 6}}}
10 33 14 7 {VertexTransitive, {14, 52}}
10 36 13 7 {Circulant, {13, {1, 2, 3, 4, 5}}}
10 36 20 10 {Rook, {2, 10}}
10 40 12 6 {CocktailParty, 6}
10 45 11 11 {Complete, 11}
11 11 60 5 {CompleteGraphSymplecticCover, {12, 5}}
11 12 30 5 {Circulant, {30, {2, 5, 6, 8, 9, 15}}}
11 15 20 4 {Circulant, {20, {1, 3, 5, 7, 9, 10}}}
11 15 26 5 {NoncayleyTransitive, {26, 42}}
11 15 26 5 {NoncayleyTransitive, {26, 47}}
11 18 24 4 {NoncayleyTransitive, {24, 46}}
11 18 26 5 {NoncayleyTransitive, {26, 43}}
11 18 26 7 {NoncayleyTransitive, {26, 51}}
11 20 24 3 {NoncayleyTransitive, {24, 45}}
11 21 20 4 {Circulant, {20, {1, 2, 4, 5, 7, 10}}}
11 21 26 5 {NoncayleyTransitive, {26, 44}}
11 21 26 6 {NoncayleyTransitive, {26, 45}}
11 21 26 6 {NoncayleyTransitive, {26, 48}}
11 21 26 6 {NoncayleyTransitive, {26, 49}}
11 21 26 6 {NoncayleyTransitive, {26, 50}}
11 21 26 6 {NoncayleyTransitive, {26, 53}}
11 21 26 7 {NoncayleyTransitive, {26, 46}}
11 21 28 6 {NoncayleyTransitive, {28, 21}}
11 23 24 5 {NoncayleyTransitive, {24, 53}}
11 23 24 6 {NoncayleyTransitive, {24, 51}}
11 24 20 4 {NoncayleyTransitive, {20, 51}}
11 24 20 5 {Circulant, {20, {1, 2, 4, 7, 8, 10}}}
11 24 20 6 {NoncayleyTransitive, {20, 53}}
11 24 26 7 {NoncayleyTransitive, {26, 52}}
11 25 42 7 {Rook, {6, 7}}
11 26 24 6 {NoncayleyTransitive, {24, 47}}
11 26 24 6 {NoncayleyTransitive, {24, 48}}
11 26 24 6 {NoncayleyTransitive, {24, 49}}
11 26 24 6 {NoncayleyTransitive, {24, 52}}
11 27 18 6 {Circulant, {18, {1, 2, 3, 5, 7, 9}}}
11 27 20 4 {Circulant, {20, {1, 2, 3, 5, 6, 10}}}
11 27 20 4 {Circulant, {20, {1, 2, 3, 5, 9, 10}}}
11 27 20 4 {Circulant, {20, {1, 2, 3, 6, 7, 10}}}
11 27 20 4 {Circulant, {20, {1, 2, 5, 6, 9, 10}}}
11 27 20 5 {Circulant, {20, {1, 2, 4, 5, 8, 10}}}
11 27 20 5 {Circulant, {20, {1, 3, 4, 5, 8, 10}}}
11 27 20 5 {Circulant, {20, {1, 4, 6, 8, 9, 10}}}
11 27 20 6 {Circulant, {20, {1, 2, 3, 6, 8, 10}}}
11 27 20 6 {Circulant, {20, {1, 2, 3, 7, 8, 10}}}
11 27 20 6 {Circulant, {20, {1, 2, 4, 6, 9, 10}}}
11 27 20 6 {Circulant, {20, {1, 2, 5, 6, 8, 10}}}
11 27 20 6 {Circulant, {20, {1, 3, 4, 5, 7, 10}}}
11 27 20 6 {Circulant, {20, {1, 3, 4, 5, 9, 10}}}
11 27 20 6 {NoncayleyTransitive, {20, 50}}
11 27 20 7 {Circulant, {20, {1, 2, 3, 4, 9, 10}}}
11 27 20 7 {Circulant, {20, {1, 2, 5, 8, 9, 10}}}
11 27 26 7 {NoncayleyTransitive, {26, 41}}
11 27 40 8 {Rook, {5, 8}}
11 28 18 5 {Circulant, {18, {1, 2, 4, 6, 7, 9}}}
11 28 18 6 {Circulant, {18, {1, 3, 5, 6, 7, 9}}}
11 28 24 6 {NoncayleyTransitive, {24, 50}}
11 28 24 6 {NoncayleyTransitive, {24, 54}}
11 28 24 6 {NoncayleyTransitive, {24, 55}}
11 30 18 6 {Circulant, {18, {1, 2, 3, 4, 8, 9}}}
11 30 20 4 {Circulant, {20, {1, 2, 3, 5, 7, 10}}}
11 30 20 4 {Circulant, {20, {1, 2, 3, 7, 9, 10}}}
11 30 20 5 {Circulant, {20, {1, 2, 5, 7, 8, 10}}}
11 30 20 5 {Circulant, {20, {1, 4, 5, 6, 8, 10}}}
11 30 20 6 {Circulant, {20, {1, 3, 4, 7, 9, 10}}}
11 30 20 6 {NoncayleyTransitive, {20, 52}}
11 30 20 6 {NoncayleyTransitive, {20, 54}}
11 30 20 7 {Circulant, {20, {1, 2, 3, 4, 7, 10}}}
11 30 20 7 {Circulant, {20, {1, 2, 3, 4, 8, 10}}}
11 30 20 7 {Circulant, {20, {1, 2, 3, 5, 8, 10}}}
11 30 20 7 {Circulant, {20, {1, 2, 4, 5, 9, 10}}}
11 30 20 7 {Circulant, {20, {1, 3, 4, 7, 8, 10}}}
11 30 20 7 {Circulant, {20, {1, 5, 6, 8, 9, 10}}}
11 31 18 6 {Circulant, {18, {1, 2, 3, 5, 6, 9}}}
11 31 18 6 {Circulant, {18, {1, 2, 3, 6, 7, 9}}}
11 31 18 6 {Circulant, {18, {1, 2, 4, 5, 6, 9}}}
11 31 18 6 {Circulant, {18, {1, 3, 4, 6, 8, 9}}}
11 31 36 9 {Rook, {4, 9}}
11 32 24 7 {NoncayleyTransitive, {24, 56}}
11 33 18 6 {Circulant, {18, {1, 2, 3, 4, 7, 9}}}
11 33 18 6 {Circulant, {18, {1, 2, 4, 5, 7, 9}}}
11 33 18 6 {Circulant, {18, {1, 2, 4, 5, 8, 9}}}
11 33 20 7 {Circulant, {20, {1, 2, 3, 4, 5, 10}}}
11 33 20 7 {Circulant, {20, {1, 2, 3, 4, 6, 10}}}
11 33 20 7 {Circulant, {20, {1, 2, 4, 5, 6, 10}}}
11 33 20 7 {Circulant, {20, {1, 2, 4, 8, 9, 10}}}
11 33 20 7 {Circulant, {20, {1, 2, 6, 8, 9, 10}}}
11 33 20 7 {Circulant, {20, {1, 4, 5, 8, 9, 10}}}
11 33 20 7 {NoncayleyTransitive, {20, 55}}
11 33 20 7 {NoncayleyTransitive, {20, 56}}
11 34 18 6 {Circulant, {18, {1, 2, 3, 4, 6, 9}}}
11 34 18 6 {Circulant, {18, {1, 2, 3, 6, 8, 9}}}
11 34 18 6 {Circulant, {18, {1, 2, 5, 6, 7, 9}}}
11 34 18 6 {Circulant, {18, {1, 3, 4, 5, 6, 9}}}
11 36 16 6 {Circulant, {16, {1, 2, 3, 4, 7, 8}}}
11 36 16 6 {Circulant, {16, {1, 2, 3, 5, 7, 8}}}
11 36 18 6 {Circulant, {18, {1, 2, 3, 4, 5, 9}}}
11 36 18 6 {Circulant, {18, {1, 2, 3, 7, 8, 9}}}
11 36 20 7 {Circulant, {20, {1, 2, 3, 8, 9, 10}}}
11 36 26 7 {NoncayleyTransitive, {26, 54}}
11 37 18 9 {Circulant, {18, {1, 2, 4, 6, 8, 9}}}
11 37 18 9 {Circulant, {18, {1, 2, 6, 7, 8, 9}}}
11 37 18 9 {Circulant, {18, {2, 3, 4, 6, 8, 9}}}
11 37 30 10 {Rook, {3, 10}}
11 39 16 8 {Circulant, {16, {1, 2, 3, 4, 5, 8}}}
11 39 16 8 {Circulant, {16, {1, 2, 3, 4, 6, 8}}}
11 39 16 8 {Circulant, {16, {1, 2, 3, 5, 6, 8}}}
11 39 16 8 {Circulant, {16, {1, 2, 4, 6, 7, 8}}}
11 39 16 8 {Circulant, {16, {1, 3, 4, 5, 7, 8}}}
11 39 16 8 {NoncayleyTransitive, {16, 8}}
11 39 20 10 {Circulant, {20, {1, 2, 4, 6, 8, 10}}}
11 39 20 10 {Circulant, {20, {1, 4, 5, 6, 9, 10}}}
11 39 20 10 {Circulant, {20, {2, 4, 5, 6, 8, 10}}}
11 45 14 7 {Circulant, {14, {1, 2, 3, 4, 6, 7}}}
11 45 14 8 {Circulant, {14, {1, 2, 3, 4, 5, 7}}}
11 55 12 12 {Complete, 12}
12 6 68 5 DoroGraph
12 6 208 N/A PGammaU34OnNonisotropicPoints
12 6 729 3 {Hamming, {6, 3}}
12 12 28 4 {NoncayleyTransitive, {28, 23}}
12 12 30 4 {ArcTransitive, {30, 23}}
12 12 37 6 {Cyclotomic, 37}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 1}}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 2}}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 3}}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 4}}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 5}}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 12}}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 15}}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 17}}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 18}}
12 12 40 False 5 {StronglyRegular, {{40, 12, 2, 4}, 23}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 6}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 7}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 8}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 9}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 10}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 11}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 13}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 14}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 16}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 19}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 20}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 21}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 22}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 24}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 25}}
12 12 40 False 6 {StronglyRegular, {{40, 12, 2, 4}, 26}}
12 12 40 5 {GeneralizedQuadrangleAndDualPointGraph, {{3, 3}, 2}}
12 12 40 6 {GeneralizedQuadrangleAndDualPointGraph, {{3, 3}, 1}}
12 12 256 4 {Doob, {1, 2}}
12 12 256 4 {Egawa, {2, 0}}
12 12 256 4 {Hamming, {4, 4}}
12 12 364 N/A {GeneralizedHexagonAndDualPointGraph, {3, 3}}
12 18 27 3 {ArcTransitive, {27, 11}}
12 18 30 3 {ArcTransitive, {30, 17}}
12 18 45 5 {GeneralizedQuadranglePointGraph, {4, 2}}
12 18 125 5 {Hamming, {3, 5}}
12 20 24 4 KroneckerProductOfIcosahedralGraphComplementAndOnesMatrixJ2
12 23 24 4 {NoncayleyTransitive, {24, 63}}
12 24 24 3 {Circulant, {24, {1, 2, 5, 7, 10, 11}}}
12 24 26 5 {Circulant, {26, {1, 3, 4, 9, 10, 12}}}
12 24 26 6 {NoncayleyTransitive, {26, 61}}
12 24 27 3 {ArcTransitive, {27, 12}}
12 24 28 4 {NoncayleyTransitive, {28, 22}}
12 24 28 5 {NoncayleyTransitive, {28, 25}}
12 27 24 4 {NoncayleyTransitive, {24, 57}}
12 27 24 4 {NoncayleyTransitive, {24, 58}}
12 27 24 4 {NoncayleyTransitive, {24, 59}}
12 27 26 6 {NoncayleyTransitive, {26, 55}}
12 27 26 6 {NoncayleyTransitive, {26, 56}}
12 27 26 6 {NoncayleyTransitive, {26, 60}}
12 27 26 7 {NoncayleyTransitive, {26, 66}}
12 27 28 6 {NoncayleyTransitive, {28, 24}}
12 29 24 4 {NoncayleyTransitive, {24, 66}}
12 29 24 6 {NoncayleyTransitive, {24, 60}}
12 29 24 6 {NoncayleyTransitive, {24, 61}}
12 29 24 6 {NoncayleyTransitive, {24, 65}}
12 30 20 4 {Circulant, {20, {1, 2, 3, 5, 7, 9}}}
12 30 20 6 {Circulant, {20, {1, 3, 4, 5, 7, 9}}}
12 30 21 3 {RookComplement, {3, 7}}
12 30 25 False 5 {Paulus, {25, 11}}
12 30 25 False 6 {Paulus, {25, 1}}
12 30 25 False 6 {Paulus, {25, 2}}
12 30 25 False 6 {Paulus, {25, 3}}
12 30 25 False 6 {Paulus, {25, 4}}
12 30 25 False 6 {Paulus, {25, 5}}
12 30 25 False 6 {Paulus, {25, 6}}
12 30 25 False 6 {Paulus, {25, 7}}
12 30 25 False 6 {Paulus, {25, 8}}
12 30 25 False 6 {Paulus, {25, 9}}
12 30 25 False 6 {Paulus, {25, 10}}
12 30 25 False 6 {Paulus, {25, 12}}
12 30 25 False 6 {Paulus, {25, 13}}
12 30 25 False 6 {Paulus, {25, 14}}
12 30 25 5 {Paley, 25}
12 30 26 6 {NoncayleyTransitive, {26, 57}}
12 30 26 7 {NoncayleyTransitive, {26, 58}}
12 30 26 7 {NoncayleyTransitive, {26, 59}}
12 30 26 7 {NoncayleyTransitive, {26, 62}}
12 30 26 7 {NoncayleyTransitive, {26, 64}}
12 30 27 7 {ArcTransitive, {27, 17}}
12 30 35 6 {Tetrahedral, 7}
12 30 49 7 {Rook, {7, 7}}
12 30 120 5 SixHundredCellGraph
12 30 175 7 HoffmanSingletonLineGraph
12 31 48 8 {Rook, {6, 8}}
12 32 24 6 {NoncayleyTransitive, {24, 62}}
12 32 24 6 {NoncayleyTransitive, {24, 64}}
12 33 20 5 {Circulant, {20, {1, 2, 4, 5, 8, 9}}}
12 33 20 5 {Circulant, {20, {1, 2, 5, 6, 8, 9}}}
12 33 26 7 {NoncayleyTransitive, {26, 63}}
12 33 26 8 {NoncayleyTransitive, {26, 65}}
12 34 45 9 {Rook, {5, 9}}
12 35 24 8 {NoncayleyTransitive, {24, 68}}
12 36 18 3 {CompleteTripartite, {6, 6, 6}}
12 36 19 5 {Circulant, {19, {1, 2, 3, 5, 6, 9}}}
12 36 20 4 {NoncayleyTransitive, {20, 57}}
12 36 20 4 {RookComplement, {4, 5}}
12 36 20 5 {Circulant, {20, {1, 2, 3, 4, 6, 9}}}
12 36 20 5 {Circulant, {20, {1, 2, 3, 4, 7, 8}}}
12 36 20 5 {Circulant, {20, {1, 2, 3, 7, 8, 9}}}
12 36 20 5 {Circulant, {20, {1, 2, 4, 5, 7, 8}}}
12 36 20 5 {Circulant, {20, {1, 2, 4, 6, 8, 9}}}
12 36 20 5 {EdgeTransitive, {20, 38}}
12 36 20 5 {NoncayleyTransitive, {20, 61}}
12 36 20 6 {Circulant, {20, {1, 2, 3, 5, 8, 9}}}
12 36 20 6 {NoncayleyTransitive, {20, 58}}
12 36 20 6 {NoncayleyTransitive, {20, 59}}
12 36 20 6 {NoncayleyTransitive, {20, 60}}
12 36 28 False 7 {Chang, 1}
12 36 28 False 7 {Chang, 2}
12 36 28 False 7 {Chang, 3}
12 36 28 7 {Triangular, 8}
12 37 24 6 {NoncayleyTransitive, {24, 67}}
12 39 19 7 {Circulant, {19, {1, 2, 3, 4, 6, 8}}}
12 39 19 7 {Circulant, {19, {1, 2, 3, 4, 7, 9}}}
12 39 19 7 {Circulant, {19, {1, 2, 3, 5, 7, 8}}}
12 39 20 4 {Circulant, {20, {1, 2, 3, 5, 6, 7}}}
12 39 20 5 {Circulant, {20, {1, 2, 3, 4, 7, 9}}}
12 39 20 5 {Circulant, {20, {1, 2, 3, 4, 8, 9}}}
12 39 20 5 {Circulant, {20, {1, 2, 4, 5, 6, 8}}}
12 39 20 5 {Circulant, {20, {1, 2, 4, 5, 6, 9}}}
12 39 20 5 {Circulant, {20, {1, 4, 5, 6, 8, 9}}}
12 39 20 6 {Circulant, {20, {1, 2, 3, 5, 7, 8}}}
12 39 20 7 {Circulant, {20, {1, 2, 3, 4, 5, 9}}}
12 39 20 7 {Circulant, {20, {1, 2, 3, 5, 6, 8}}}
12 39 20 7 {NoncayleyTransitive, {20, 62}}
12 39 40 10 {Rook, {4, 10}}
12 40 18 5 {Circulant, {18, {1, 2, 3, 6, 7, 8}}}
12 42 19 7 {Circulant, {19, {1, 2, 3, 4, 5, 8}}}
12 42 19 7 {Circulant, {19, {1, 2, 3, 4, 5, 9}}}
12 42 19 7 {Circulant, {19, {1, 2, 3, 4, 6, 7}}}
12 42 19 7 {Circulant, {19, {1, 2, 3, 4, 6, 9}}}
12 42 20 5 {Circulant, {20, {1, 2, 3, 4, 6, 7}}}
12 42 20 5 {Circulant, {20, {1, 2, 3, 4, 6, 8}}}
12 42 20 5 {Circulant, {20, {1, 3, 4, 7, 8, 9}}}
12 42 20 5 {NoncayleyTransitive, {20, 63}}
12 42 20 7 {Circulant, {20, {1, 2, 3, 4, 5, 7}}}
12 42 20 7 {Circulant, {20, {1, 2, 3, 4, 5, 8}}}
12 42 20 7 {Circulant, {20, {1, 3, 4, 5, 7, 8}}}
12 43 18 6 {Circulant, {18, {1, 2, 3, 4, 6, 7}}}
12 43 18 6 {Circulant, {18, {1, 2, 3, 5, 6, 7}}}
12 44 18 6 {NoncayleyTransitive, {18, 4}}
12 45 17 6 {Circulant, {17, {1, 2, 3, 4, 6, 8}}}
12 45 18 6 {Circulant, {18, {1, 2, 3, 4, 5, 7}}}
12 45 18 6 {Circulant, {18, {1, 2, 3, 4, 5, 8}}}
12 45 19 10 {Circulant, {19, {1, 2, 3, 4, 5, 6}}}
12 45 19 10 {Circulant, {19, {1, 2, 3, 4, 5, 7}}}
12 45 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6}}}
12 45 20 10 {NoncayleyTransitive, {20, 64}}
12 46 18 9 {Circulant, {18, {1, 2, 3, 4, 5, 6}}}
12 46 18 9 {Circulant, {18, {1, 2, 3, 4, 6, 8}}}
12 46 18 9 {Circulant, {18, {1, 2, 4, 5, 6, 7}}}
12 46 18 9 {Circulant, {18, {1, 2, 4, 5, 6, 8}}}
12 48 16 4 {CompleteKPartite, {4, 4, 4, 4}}
12 48 17 9 {Circulant, {17, {1, 2, 3, 4, 5, 6}}}
12 48 17 9 {Circulant, {17, {1, 2, 3, 4, 5, 7}}}
12 48 17 9 {Circulant, {17, {1, 2, 3, 4, 5, 8}}}
12 51 16 8 {Circulant, {16, {1, 2, 3, 4, 5, 6}}}
12 51 16 8 {Circulant, {16, {1, 2, 3, 4, 5, 7}}}
12 54 15 5 {CompleteKPartite, {3, 3, 3, 3, 3}}
12 55 15 8 {Circulant, {15, {1, 2, 3, 4, 5, 6}}}
12 55 15 9 {Circulant, {15, {1, 2, 3, 4, 5, 7}}}
12 60 14 7 {CocktailParty, 7}
12 66 13 13 {Complete, 13}
13 24 28 6 {NoncayleyTransitive, {28, 27}}
13 26 42 6 {CompleteGraphSymplecticCover, {14, 3}}
13 26 42 6 CoolsaetDegraerThreeCoverOfK14
13 27 28 7 {NoncayleyTransitive, {28, 28}}
13 30 28 6 {NoncayleyTransitive, {28, 29}}
13 30 28 6 {Nuciferous, {28, 1}}
13 33 26 6 {NoncayleyTransitive, {26, 67}}
13 33 26 6 {NoncayleyTransitive, {26, 74}}
13 36 24 4 {NoncayleyTransitive, {24, 69}}
13 36 26 6 {NoncayleyTransitive, {26, 70}}
13 36 26 7 {NoncayleyTransitive, {26, 68}}
13 36 26 7 {NoncayleyTransitive, {26, 69}}
13 36 26 7 {NoncayleyTransitive, {26, 71}}
13 36 26 7 {NoncayleyTransitive, {26, 77}}
13 36 28 7 {NoncayleyTransitive, {28, 33}}
13 36 56 8 {Rook, {7, 8}}
13 38 24 7 {NoncayleyTransitive, {24, 78}}
13 38 54 9 {Rook, {6, 9}}
13 39 24 4 {NoncayleyTransitive, {24, 72}}
13 39 24 4 {NoncayleyTransitive, {24, 74}}
13 39 24 4 {NoncayleyTransitive, {24, 75}}
13 39 26 6 {NoncayleyTransitive, {26, 76}}
13 39 26 7 {NoncayleyTransitive, {26, 75}}
13 39 26 8 {NoncayleyTransitive, {26, 72}}
13 39 26 8 {NoncayleyTransitive, {26, 78}}
13 39 28 7 {LocallyPaley, 13}
13 39 28 7 {NoncayleyTransitive, {28, 31}}
13 41 24 6 {NoncayleyTransitive, {24, 73}}
13 41 24 6 {NoncayleyTransitive, {24, 76}}
13 42 26 7 {NoncayleyTransitive, {26, 73}}
13 42 28 7 {NoncayleyTransitive, {28, 30}}
13 42 50 10 {Rook, {5, 10}}
13 44 24 6 {NoncayleyTransitive, {24, 71}}
13 44 24 8 {NoncayleyTransitive, {24, 70}}
13 44 24 8 {NoncayleyTransitive, {24, 77}}
13 45 20 4 {Circulant, {20, {1, 2, 3, 5, 7, 9, 10}}}
13 45 20 5 {Circulant, {20, {1, 2, 4, 5, 7, 8, 10}}}
13 45 20 6 {Circulant, {20, {1, 3, 4, 5, 7, 9, 10}}}
13 45 20 6 {NoncayleyTransitive, {20, 66}}
13 46 24 6 {NoncayleyTransitive, {24, 79}}
13 48 20 4 {Circulant, {20, {1, 2, 3, 5, 6, 7, 10}}}
13 48 20 4 {Circulant, {20, {1, 2, 3, 6, 7, 9, 10}}}
13 48 20 6 {NoncayleyTransitive, {20, 65}}
13 48 20 6 {NoncayleyTransitive, {20, 69}}
13 48 20 7 {Circulant, {20, {1, 2, 3, 4, 5, 9, 10}}}
13 48 20 7 {Circulant, {20, {1, 2, 3, 4, 6, 9, 10}}}
13 48 20 7 {Circulant, {20, {1, 2, 3, 4, 7, 8, 10}}}
13 48 20 7 {Circulant, {20, {1, 2, 3, 5, 6, 8, 10}}}
13 48 20 7 {Circulant, {20, {1, 2, 4, 5, 8, 9, 10}}}
13 48 20 7 {Circulant, {20, {1, 2, 5, 6, 8, 9, 10}}}
13 51 20 5 {NoncayleyTransitive, {20, 70}}
13 51 20 7 {Circulant, {20, {1, 2, 3, 4, 5, 7, 10}}}
13 51 20 7 {Circulant, {20, {1, 2, 3, 4, 5, 8, 10}}}
13 51 20 7 {Circulant, {20, {1, 2, 3, 4, 7, 9, 10}}}
13 51 20 7 {Circulant, {20, {1, 2, 3, 4, 8, 9, 10}}}
13 51 20 7 {Circulant, {20, {1, 2, 3, 5, 8, 9, 10}}}
13 51 20 7 {Circulant, {20, {1, 3, 4, 5, 7, 8, 10}}}
13 51 20 7 {NoncayleyTransitive, {20, 68}}
13 51 20 8 {NoncayleyTransitive, {20, 67}}
13 54 18 6 {Circulant, {18, {1, 2, 4, 5, 7, 8, 9}}}
13 54 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 10}}}
13 54 20 10 {Circulant, {20, {1, 2, 3, 4, 6, 7, 10}}}
13 54 20 10 {Circulant, {20, {1, 2, 3, 4, 6, 8, 10}}}
13 54 20 10 {Circulant, {20, {1, 2, 3, 5, 7, 8, 10}}}
13 54 20 10 {Circulant, {20, {1, 2, 3, 7, 8, 9, 10}}}
13 54 20 10 {Circulant, {20, {1, 2, 4, 5, 6, 8, 10}}}
13 54 20 10 {Circulant, {20, {1, 2, 4, 5, 6, 9, 10}}}
13 54 20 10 {Circulant, {20, {1, 2, 4, 6, 8, 9, 10}}}
13 54 20 10 {Circulant, {20, {1, 3, 4, 7, 8, 9, 10}}}
13 54 20 10 {Circulant, {20, {1, 4, 5, 6, 8, 9, 10}}}
13 54 20 10 {NoncayleyTransitive, {20, 71}}
13 55 18 6 {Circulant, {18, {1, 2, 3, 4, 6, 7, 9}}}
13 55 18 6 {Circulant, {18, {1, 2, 3, 5, 6, 7, 9}}}
13 57 18 6 {Circulant, {18, {1, 2, 3, 4, 5, 7, 9}}}
13 57 18 6 {Circulant, {18, {1, 2, 3, 4, 5, 8, 9}}}
13 58 18 9 {Circulant, {18, {1, 2, 3, 4, 5, 6, 9}}}
13 58 18 9 {Circulant, {18, {1, 2, 3, 4, 6, 8, 9}}}
13 58 18 9 {Circulant, {18, {1, 2, 3, 6, 7, 8, 9}}}
13 58 18 9 {Circulant, {18, {1, 2, 4, 5, 6, 7, 9}}}
13 58 18 9 {Circulant, {18, {1, 2, 4, 5, 6, 8, 9}}}
13 66 16 8 {Circulant, {16, {1, 2, 3, 4, 5, 6, 8}}}
13 66 16 8 {Circulant, {16, {1, 2, 3, 4, 5, 7, 8}}}
13 66 16 8 {Circulant, {16, {1, 2, 3, 5, 6, 7, 8}}}
13 78 14 14 {Complete, 14}
14 21 43 7 {Cyclotomic, 43}
14 28 36 False 6 {StronglyRegular, {{36, 14, 4, 6}, 1}}
14 28 36 6 U33Graph
14 33 26 5 {NoncayleyTransitive, {26, 81}}
14 36 28 6 {NoncayleyTransitive, {28, 37}}
14 39 28 7 {NoncayleyTransitive, {28, 34}}
14 39 28 7 {NoncayleyTransitive, {28, 39}}
14 42 24 3 {RookComplement, {3, 8}}
14 42 26 7 {NoncayleyTransitive, {26, 80}}
14 42 28 7 {NoncayleyTransitive, {28, 35}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 1}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 2}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 3}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 4}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 5}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 6}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 7}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 8}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 9}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 10}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 11}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 12}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 13}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 15}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 16}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 17}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 18}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 19}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 20}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 21}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 22}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 23}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 24}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 25}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 26}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 27}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 28}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 29}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 30}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 31}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 32}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 33}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 34}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 35}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 36}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 37}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 38}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 39}}
14 42 29 False 7 {StronglyRegular, {{29, 14, 6, 7}, 40}}
14 42 29 False 8 {StronglyRegular, {{29, 14, 6, 7}, 14}}
14 42 29 8 {Paley, 29}
14 42 64 8 {Rook, {8, 8}}
14 42 456 8 {GeneralizedHexagon, {7, 1}}
14 43 63 9 {Rook, {7, 9}}
14 45 26 7 {NoncayleyTransitive, {26, 85}}
14 46 60 10 {Rook, {6, 10}}
14 48 24 4 {NoncayleyTransitive, {24, 80}}
14 48 24 4 {NoncayleyTransitive, {24, 81}}
14 48 24 4 {NoncayleyTransitive, {24, 83}}
14 48 24 4 {NoncayleyTransitive, {24, 86}}
14 48 24 4 {NoncayleyTransitive, {24, 87}}
14 48 26 7 {NoncayleyTransitive, {26, 79}}
14 48 26 7 {NoncayleyTransitive, {26, 84}}
14 48 26 7 {NoncayleyTransitive, {26, 88}}
14 48 26 7 {NoncayleyTransitive, {26, 92}}
14 48 26 8 {NoncayleyTransitive, {26, 83}}
14 48 26 8 {NoncayleyTransitive, {26, 86}}
14 48 26 8 {NoncayleyTransitive, {26, 87}}
14 48 28 7 {NoncayleyTransitive, {28, 38}}
14 49 21 3 {CompleteTripartite, {7, 7, 7}}
14 49 36 9 {Triangular, 9}
14 50 24 8 {NoncayleyTransitive, {24, 84}}
14 51 26 7 {NoncayleyTransitive, {26, 82}}
14 51 26 8 {NoncayleyTransitive, {26, 89}}
14 51 28 7 {NoncayleyTransitive, {28, 40}}
14 53 24 6 {NoncayleyTransitive, {24, 82}}
14 54 26 8 {NoncayleyTransitive, {26, 90}}
14 54 26 8 {NoncayleyTransitive, {26, 91}}
14 54 28 7 {NoncayleyTransitive, {28, 36}}
14 55 24 6 {NoncayleyTransitive, {24, 88}}
14 56 24 8 KleinDistance2Graph
14 56 24 8 {NoncayleyTransitive, {24, 90}}
14 58 24 6 {NoncayleyTransitive, {24, 85}}
14 58 24 6 {NoncayleyTransitive, {24, 89}}
14 60 20 4 {Circulant, {20, {1, 2, 3, 5, 6, 7, 9}}}
14 60 20 5 {Circulant, {20, {1, 2, 4, 5, 6, 8, 9}}}
14 60 20 6 {Circulant, {20, {1, 2, 3, 5, 7, 8, 9}}}
14 63 20 5 {Circulant, {20, {1, 2, 3, 4, 6, 7, 8}}}
14 63 20 5 {Circulant, {20, {1, 2, 3, 4, 6, 7, 9}}}
14 63 20 5 {Circulant, {20, {1, 2, 3, 4, 7, 8, 9}}}
14 63 20 7 {Circulant, {20, {1, 2, 3, 4, 5, 8, 9}}}
14 63 20 7 {NoncayleyTransitive, {20, 74}}
14 63 20 8 {Circulant, {20, {1, 2, 3, 4, 5, 7, 9}}}
14 63 20 8 {NoncayleyTransitive, {20, 73}}
14 66 19 7 {Circulant, {19, {1, 2, 3, 4, 5, 8, 9}}}
14 66 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 7}}}
14 66 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 8}}}
14 66 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 9}}}
14 66 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 7, 8}}}
14 66 20 10 {Circulant, {20, {1, 3, 4, 5, 7, 8, 9}}}
14 66 20 10 {NoncayleyTransitive, {20, 72}}
14 66 20 10 {NoncayleyTransitive, {20, 75}}
14 69 19 10 {Circulant, {19, {1, 2, 3, 4, 5, 6, 7}}}
14 69 19 10 {Circulant, {19, {1, 2, 3, 4, 5, 6, 8}}}
14 69 19 10 {Circulant, {19, {1, 2, 3, 4, 5, 6, 9}}}
14 72 18 6 {Circulant, {18, {1, 2, 3, 4, 5, 7, 8}}}
14 73 18 9 {Circulant, {18, {1, 2, 3, 4, 5, 6, 7}}}
14 73 18 9 {Circulant, {18, {1, 2, 3, 4, 5, 6, 8}}}
14 73 18 9 {Circulant, {18, {1, 2, 4, 5, 6, 7, 8}}}
14 78 17 9 {Circulant, {17, {1, 2, 3, 4, 5, 6, 7}}}
14 84 16 8 {CocktailParty, 8}
14 91 15 15 {Complete, 15}
15 15 1024 4 {Doob, {1, 3}}
15 15 1024 4 {Doob, {2, 1}}
15 15 1024 4 {Hamming, {5, 4}}
15 30 216 6 {Hamming, {3, 6}}
15 45 28 False 6 {ChangComplement, 1}
15 45 28 False 7 {ChangComplement, 2}
15 45 28 False 8 {ChangComplement, 3}
15 45 28 6 {Kneser, {8, 2}}
15 45 32 7 {LocallyGeneralizedQuadrangle, {2, 2}}
15 45 36 False 8 {StronglyRegular, {{36, 15, 6, 6}, 1}}
15 45 56 7 {Tetrahedral, 8}
15 46 30 6 {Nuciferous, {30, 2}}
15 48 30 5 {Nuciferous, {30, 11}}
15 49 72 9 {Rook, {8, 9}}
15 51 26 7 {NoncayleyTransitive, {26, 95}}
15 51 30 5 {Nuciferous, {30, 3}}
15 51 70 10 {Rook, {7, 10}}
15 52 30 6 {Nuciferous, {30, 4}}
15 52 30 6 {Nuciferous, {30, 5}}
15 52 30 6 {Nuciferous, {30, 6}}
15 52 30 6 {Nuciferous, {30, 7}}
15 54 28 6 {Nuciferous, {28, 3}}
15 54 28 7 {NoncayleyTransitive, {28, 42}}
15 54 28 7 {Nuciferous, {28, 2}}
15 54 30 6 {Nuciferous, {30, 10}}
15 55 30 6 {Nuciferous, {30, 9}}
15 57 28 7 {NoncayleyTransitive, {28, 43}}
15 57 28 10 {NoncayleyTransitive, {28, 44}}
15 58 30 6 {Circulant, {30, {1, 4, 5, 8, 9, 10, 14, 15}}}
15 60 24 4 {NoncayleyTransitive, {24, 91}}
15 60 24 4 {NoncayleyTransitive, {24, 93}}
15 60 24 4 {RookComplement, {4, 6}}
15 60 26 False 8 {PaulusComplement, {26, 1}}
15 60 26 False 8 {PaulusComplement, {26, 2}}
15 60 26 False 8 {PaulusComplement, {26, 3}}
15 60 26 False 8 {PaulusComplement, {26, 7}}
15 60 26 False 8 {PaulusComplement, {26, 8}}
15 60 26 False 9 {PaulusComplement, {26, 4}}
15 60 26 False 9 {PaulusComplement, {26, 5}}
15 60 26 False 9 {PaulusComplement, {26, 6}}
15 60 26 False 9 {PaulusComplement, {26, 9}}
15 60 26 False 9 {PaulusComplement, {26, 10}}
15 60 26 7 {NoncayleyTransitive, {26, 93}}
15 60 26 7 {NoncayleyTransitive, {26, 104}}
15 60 26 8 {NoncayleyTransitive, {26, 94}}
15 60 26 8 {NoncayleyTransitive, {26, 96}}
15 60 26 8 {NoncayleyTransitive, {26, 97}}
15 60 26 8 {NoncayleyTransitive, {26, 98}}
15 60 26 8 {NoncayleyTransitive, {26, 99}}
15 60 26 8 {NoncayleyTransitive, {26, 101}}
15 60 26 8 {NoncayleyTransitive, {26, 102}}
15 60 26 9 {NoncayleyTransitive, {26, 105}}
15 60 32 8 {HalvedCube, 6}
15 63 24 4 {NoncayleyTransitive, {24, 96}}
15 63 26 8 {NoncayleyTransitive, {26, 103}}
15 64 24 6 {Nuciferous, {24, 3}}
15 65 24 8 {NoncayleyTransitive, {24, 94}}
15 66 24 6 {Nuciferous, {24, 4}}
15 66 24 6 {Nuciferous, {24, 5}}
15 66 24 8 {NoncayleyTransitive, {24, 95}}
15 66 24 8 {Nuciferous, {24, 6}}
15 69 26 9 {NoncayleyTransitive, {26, 100}}
15 69 28 10 {NoncayleyTransitive, {28, 45}}
15 70 24 6 {NoncayleyTransitive, {24, 98}}
15 70 24 8 {NoncayleyTransitive, {24, 92}}
15 70 24 8 {NoncayleyTransitive, {24, 97}}
15 70 24 8 {NoncayleyTransitive, {24, 99}}
15 75 20 4 {CompleteKPartite, {5, 5, 5, 5}}
15 78 20 7 {Circulant, {20, {1, 2, 3, 4, 5, 8, 9, 10}}}
15 78 20 8 {Circulant, {20, {1, 2, 3, 4, 5, 7, 9, 10}}}
15 81 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 10}}}
15 81 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 8, 10}}}
15 81 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 9, 10}}}
15 81 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 7, 8, 10}}}
15 81 20 10 {Circulant, {20, {1, 2, 3, 4, 6, 7, 8, 10}}}
15 81 20 10 {Circulant, {20, {1, 2, 3, 4, 6, 7, 9, 10}}}
15 81 20 10 {Circulant, {20, {1, 2, 3, 4, 7, 8, 9, 10}}}
15 81 20 10 {Circulant, {20, {1, 2, 3, 5, 7, 8, 9, 10}}}
15 81 20 10 {Circulant, {20, {1, 2, 4, 5, 6, 8, 9, 10}}}
15 81 20 10 {Circulant, {20, {1, 3, 4, 5, 7, 8, 9, 10}}}
15 81 20 10 {NoncayleyTransitive, {20, 76}}
15 81 20 10 {NoncayleyTransitive, {20, 77}}
15 81 20 10 {NoncayleyTransitive, {20, 78}}
15 81 20 10 {NoncayleyTransitive, {20, 79}}
15 90 18 6 {CompleteKPartite, {3, 3, 3, 3, 3, 3}}
15 91 18 9 {Circulant, {18, {1, 2, 3, 4, 5, 6, 8, 9}}}
15 91 18 9 {Circulant, {18, {1, 2, 4, 5, 6, 7, 8, 9}}}
15 91 18 10 {Circulant, {18, {1, 2, 3, 4, 5, 6, 7, 9}}}
15 105 16 16 {Complete, 16}
16 24 85 7 {CompleteGraphSymplecticCover, {17, 5}}
16 24 625 5 {Hamming, {4, 5}}
16 40 51 8 {CompleteGraphSymplecticCover, {17, 3}}
16 48 30 3 {Circulant, {30, {1, 2, 4, 7, 8, 11, 13, 14}}}
16 48 35 False 7 {StronglyRegular, {{35, 16, 6, 8}, 1}}
16 48 49 9 {Cyclotomic, 49}
16 48 70 6 {Johnson, {8, 4}}
16 56 27 3 {RookComplement, {3, 9}}
16 56 81 9 {Rook, {9, 9}}
16 56 657 9 {GeneralizedHexagon, {8, 1}}
16 57 80 10 {Rook, {8, 10}}
16 64 24 3 {CompleteTripartite, {8, 8, 8}}
16 64 30 5 {ArcTransitive, {30, 31}}
16 64 45 9 {Triangular, 10}
16 66 26 6 {NoncayleyTransitive, {26, 106}}
16 66 28 7 {NoncayleyTransitive, {28, 46}}
16 69 26 7 {NoncayleyTransitive, {26, 108}}
16 69 26 8 {NoncayleyTransitive, {26, 107}}
16 72 25 5 {RookComplement, {5, 5}}
16 72 26 8 {NoncayleyTransitive, {26, 109}}
16 72 26 8 {NoncayleyTransitive, {26, 110}}
16 72 26 8 {NoncayleyTransitive, {26, 111}}
16 75 24 4 {NoncayleyTransitive, {24, 100}}
16 75 24 4 {NoncayleyTransitive, {24, 102}}
16 75 26 8 {NoncayleyTransitive, {26, 112}}
16 75 26 9 {NoncayleyTransitive, {26, 113}}
16 80 24 8 {NoncayleyTransitive, {24, 101}}
16 80 27 9 SchlaefliGraph
16 82 24 6 {NoncayleyTransitive, {24, 103}}
16 82 24 6 {NoncayleyTransitive, {24, 105}}
16 82 24 8 {NoncayleyTransitive, {24, 104}}
16 85 24 12 {NoncayleyTransitive, {24, 106}}
16 96 20 5 {CompleteKPartite, {4, 4, 4, 4, 4}}
16 99 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 8}}}
16 99 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 9}}}
16 99 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 7, 8, 9}}}
16 99 20 10 {NoncayleyTransitive, {20, 80}}
16 99 20 10 {NoncayleyTransitive, {20, 81}}
16 99 20 10 {NoncayleyTransitive, {20, 82}}
16 105 19 10 {Circulant, {19, {1, 2, 3, 4, 5, 6, 7, 8}}}
16 112 18 9 {CocktailParty, 9}
16 120 17 17 {Complete, 17}
17 64 90 10 {Rook, {9, 10}}
17 68 36 9 {LocallyPaley, 17}
17 81 28 8 {NoncayleyTransitive, {28, 47}}
17 81 28 8 {NoncayleyTransitive, {28, 49}}
17 84 26 8 {NoncayleyTransitive, {26, 117}}
17 84 28 10 {NoncayleyTransitive, {28, 48}}
17 87 26 8 {NoncayleyTransitive, {26, 114}}
17 87 26 8 {NoncayleyTransitive, {26, 118}}
17 90 26 8 {NoncayleyTransitive, {26, 115}}
17 90 26 9 {NoncayleyTransitive, {26, 116}}
17 93 26 9 {NoncayleyTransitive, {26, 119}}
17 95 24 8 {NoncayleyTransitive, {24, 107}}
17 96 24 8 {NoncayleyTransitive, {24, 108}}
17 100 24 12 {NoncayleyTransitive, {24, 109}}
17 100 24 12 {NoncayleyTransitive, {24, 110}}
17 100 24 12 {NoncayleyTransitive, {24, 111}}
17 120 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 8, 10}}}
17 120 20 10 {Circulant, {20, {1, 2, 3, 4, 5, 7, 8, 9, 10}}}
17 120 20 10 {Circulant, {20, {1, 2, 3, 4, 6, 7, 8, 9, 10}}}
17 120 20 12 {Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 9, 10}}}
17 136 18 18 {Complete, 18}
18 45 343 7 {Hamming, {3, 7}}
18 63 49 7 {Pasechnik, 2}
18 63 84 7 {Tetrahedral, 9}
18 72 30 3 {RookComplement, {3, 10}}
18 72 37 False 8 {StronglyRegular, {{37, 18, 8, 9}, 1}}
18 72 37 10 {Paley, 37}
18 72 100 10 {Rook, {10, 10}}
18 81 27 3 {CompleteTripartite, {9, 9, 9}}
18 81 30 5 {ArcTransitive, {30, 35}}
18 81 35 7 {Grassmann, {2, {4, 2}}}
18 81 55 11 {Triangular, 11}
18 90 28 4 {RookComplement, {4, 7}}
18 93 28 7 {NoncayleyTransitive, {28, 52}}
18 93 28 7 {NoncayleyTransitive, {28, 55}}
18 96 28 7 {NoncayleyTransitive, {28, 54}}
18 96 28 10 {NoncayleyTransitive, {28, 51}}
18 99 28 10 {NoncayleyTransitive, {28, 50}}
18 99 28 10 {NoncayleyTransitive, {28, 53}}
18 102 26 7 {NoncayleyTransitive, {26, 122}}
18 105 26 9 {NoncayleyTransitive, {26, 120}}
18 105 26 9 {NoncayleyTransitive, {26, 121}}
18 105 26 9 {NoncayleyTransitive, {26, 123}}
18 105 26 9 {NoncayleyTransitive, {26, 125}}
18 108 24 4 {Circulant, {24, {1, 2, 3, 5, 6, 7, 9, 10, 11}}}
18 108 26 9 {NoncayleyTransitive, {26, 124}}
18 108 26 10 {NoncayleyTransitive, {26, 126}}
18 118 24 12 {NoncayleyTransitive, {24, 112}}
18 135 21 7 {Circulant, {21, {1, 2, 3, 4, 5, 6, 8, 9, 10}}}
18 136 144 18 K18ReplacedSextupledCubicalGraph
18 144 20 10 {CocktailParty, 10}
18 153 19 19 {Complete, 19}
19 117 28 10 {NoncayleyTransitive, {28, 56}}
19 123 26 9 {NoncayleyTransitive, {26, 129}}
19 126 26 10 {NoncayleyTransitive, {26, 127}}
19 129 26 13 {NoncayleyTransitive, {26, 128}}
19 171 20 20 {Complete, 20}
20 10 81 7 BrouwerHaemersGraph
20 10 84 5 {Kneser, {9, 3}}
20 10 243 N/A ShortenedTernaryGolayCodeCosetGraph
20 10 525 N/A PGammaU35OnNonisotropicPoints
20 40 1296 6 {Hamming, {4, 6}}
20 60 61 8 {Cyclotomic, 61}
20 70 126 8 {Johnson, {9, 4}}
20 90 41 9 {Paley, 41}
20 90 121 11 {Rook, {11, 11}}
20 100 30 3 {CompleteTripartite, {10, 10, 10}}
20 100 66 11 {Triangular, 12}
20 116 30 6 KroneckerProductOfPetersenLineGraphComplementAndOnesMatrixJ2
20 120 30 5 {RookComplement, {5, 6}}
20 132 28 7 {NoncayleyTransitive, {28, 57}}
20 147 26 9 {NoncayleyTransitive, {26, 130}}
20 150 25 5 {Circulant, {25, {1, 2, 3, 4, 6, 7, 8, 9, 11, 12}}}
20 150 26 13 {NoncayleyTransitive, {26, 131}}
20 160 24 6 {Circulant, {24, {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}}}
20 180 22 11 {CocktailParty, 11}
20 190 21 21 {Complete, 21}
21 84 64 8 {Cyclotomic, 64}
21 84 120 10 {Tetrahedral, 10}
21 105 36 7 {Kneser, {9, 2}}
21 105 64 8 {HalvedCube, 7}
21 126 32 4 {RookComplement, {4, 8}}
21 147 28 4 {Circulant, {28, {1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14}}}
21 156 28 7 {NoncayleyTransitive, {28, 60}}
21 156 28 8 {NoncayleyTransitive, {28, 59}}
21 159 28 7 {NoncayleyTransitive, {28, 62}}
21 159 28 10 {NoncayleyTransitive, {28, 61}}
21 159 28 11 {NoncayleyTransitive, {28, 58}}
21 189 24 8 {Circulant, {24, {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12}}}
21 210 22 22 {Complete, 22}
22 11 243 N/A BerlekampVanLintSeidelGraph
22 11 729 3 ShortenedExtendedTernaryGolayCodeCosetGraph
22 66 67 9 {Cyclotomic, 67}
22 110 144 12 {Rook, {12, 12}}
22 121 78 13 {Triangular, 13}
22 175 30 15 {Nuciferous, {30, 12}}
22 183 28 11 {NoncayleyTransitive, {28, 63}}
22 186 28 14 {NoncayleyTransitive, {28, 64}}
22 201 26 13 {NoncayleyTransitive, {26, 132}}
22 220 24 12 {CocktailParty, 12}
22 231 23 23 {Complete, 23}
23 213 28 14 {NoncayleyTransitive, {28, 65}}
23 253 24 24 {Complete, 24}
24 12 729 3 ExtendedTernaryGolayCodeCosetGraph
24 96 73 10 {Cyclotomic, 73}
24 96 210 N/A {Johnson, {10, 4}}
24 132 49 7 {Paley, 49}
24 132 169 13 {Rook, {13, 13}}
24 144 91 13 {Triangular, 14}
24 168 36 4 {RookComplement, {4, 9}}
24 180 35 5 {RookComplement, {5, 7}}
24 216 30 5 {Circulant, {30, {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}}}
24 240 28 7 {Circulant, {28, {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}}}
24 243 28 14 {NoncayleyTransitive, {28, 66}}
24 252 27 9 {Circulant, {27, {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13}}}
24 264 26 13 {CocktailParty, 13}
24 276 25 25 {Complete, 25}
25 100 252 8 {Johnson, {10, 5}}
25 200 36 6 {RookComplement, {6, 6}}
25 250 30 6 {Circulant, {30, {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15}}}
25 300 26 26 {Complete, 26}
26 78 79 9 {Cyclotomic, 79}
26 156 53 11 {Paley, 53}
26 156 196 14 {Rook, {14, 14}}
26 169 105 15 {Triangular, 15}
26 312 28 14 {CocktailParty, 14}
26 325 27 27 {Complete, 27}
27 135 56 8 GossetDistance2Graph
27 216 40 4 {RookComplement, {4, 10}}
27 216 56 14 GossetGraph
27 324 30 10 {Circulant, {30, {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15}}}
27 351 28 28 {Complete, 28}
28 168 128 8 {HalvedCube, 8}
28 182 225 15 {Rook, {15, 15}}
28 196 120 15 {Triangular, 16}
28 210 45 8 {Kneser, {10, 2}}
28 252 40 5 {RookComplement, {5, 8}}
28 364 30 15 {CocktailParty, 15}
28 378 29 29 {Complete, 29}
29 406 30 30 {Complete, 30}
30 15 759 N/A LargeWittGraph
30 30 112 8 {GeneralizedQuadrangle, {3, 9}}
30 135 231 N/A CameronGraph
30 210 61 13 {Paley, 61}
30 210 256 16 {Rook, {16, 16}}
30 225 136 17 {Triangular, 17}
30 300 42 6 {RookComplement, {6, 7}}
30 420 32 16 {CocktailParty, 16}
32 64 105 6 GoethalsSeidelGraph105
32 64 315 N/A {Soicher, 3}
32 192 97 13 {Cyclotomic, 97}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 3}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 4}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 5}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 8}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 12}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 16}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 17}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 20}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 24}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 27}}
32 240 65 False 11 {StronglyRegular, {{65, 32, 15, 16}, 30}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 1}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 2}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 6}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 7}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 9}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 10}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 11}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 13}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 14}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 15}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 18}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 19}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 21}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 22}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 23}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 25}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 26}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 28}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 29}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 31}}
32 240 65 False 12 {StronglyRegular, {{65, 32, 15, 16}, 32}}
32 240 289 17 {Rook, {17, 17}}
32 256 63 9 {StronglyRegular, {{63, 32, 16, 16}, 1}}
32 256 153 17 {Triangular, 18}
32 336 45 5 {RookComplement, {5, 9}}
32 480 34 17 {CocktailParty, 17}
33 33 1024 N/A ShiKrotoveSoleGraph
34 261 64 8 {Keller, 3}
34 272 324 18 {Rook, {18, 18}}
34 289 171 19 {Triangular, 19}
34 544 36 18 {CocktailParty, 18}
35 70 120 6 {Kneser, {10, 3}}
35 315 64 False 11 {GoethalsSeidelBlockDesign, {2, 7}}
35 420 48 6 {RookComplement, {6, 8}}
36 252 100 10 HallJankoGraph
36 252 256 N/A {HalvedCube, 9}
36 306 73 15 {Paley, 73}
36 306 361 19 {Rook, {19, 19}}
36 324 190 19 {Triangular, 20}
36 378 55 9 {Kneser, {11, 2}}
36 432 50 5 {RookComplement, {5, 10}}
36 450 49 7 {RookComplement, {7, 7}}
36 612 38 19 {CocktailParty, 19}
38 342 400 20 {Rook, {20, 20}}
38 684 40 20 {CocktailParty, 20}
40 80 216 6 U42Graph216
40 380 81 9 {Paley, 81}
40 560 54 6 {RookComplement, {6, 9}}
42 357 155 N/A {Grassmann, {2, {5, 2}}}
42 630 56 7 {RookComplement, {7, 8}}
42 735 50 25 HoffmanSingletonComplementGraph
44 462 89 18 {Paley, 89}
45 270 126 N/A ZaraGraph
45 270 378 N/A ZaraGraphAntipodalThreeCover
45 360 512 N/A {HalvedCube, 10}
45 630 66 10 {Kneser, {12, 2}}
45 720 60 6 {RookComplement, {6, 10}}
48 480 130 13 {Grassmann, {3, {4, 2}}}
48 552 97 17 {Paley, 97}
48 840 63 7 {RookComplement, {7, 9}}
49 882 64 8 {RookComplement, {8, 8}}
50 525 121 11 {Pasechnik, 3}
50 600 101 21 {Paley, 101}
54 702 109 19 {Paley, 109}
54 1080 70 7 {RookComplement, {7, 10}}
55 990 78 11 {Kneser, {13, 2}}
56 280 162 10 LocalMcLaughlinGraph
56 280 165 7 {Kneser, {11, 3}}
56 280 486 N/A {Soicher, 2}
56 756 113 17 {Paley, 113}
56 756 240 N/A 421PolytopeGraph
56 784 120 15 {StronglyRegular, {{120, 56, 28, 24}, 1}}
56 1176 72 8 {RookComplement, {8, 9}}
60 870 121 11 {Paley, 121}
62 930 125 18 {Paley, 125}
63 945 120 False 14 {GoethalsSeidelBlockDesign, {3, 7}}
63 945 120 16 {StronglyRegular, {{120, 63, 30, 36}, 1}}
63 1512 80 8 {RookComplement, {8, 10}}
64 1568 81 9 {RookComplement, {9, 9}}
66 990 144 12 HalvedLeonardGraph1
66 990 144 12 HalvedLeonardGraph2
66 1485 91 12 {Kneser, {14, 2}}
68 1122 137 20 {Paley, 137}
70 35 495 6 {Kneser, {12, 4}}
70 630 176 12 {StronglyRegular, {{176, 70, 18, 34}, 1}}
72 720 175 N/A HoffmanSingletonLineDistance2Graph
72 2016 90 9 {RookComplement, {9, 10}}
74 1332 149 22 {Paley, 149}
77 1540 144 False 19 {GoethalsSeidelBlockDesign, {2, 11}}
78 1482 157 23 {Paley, 157}
78 2145 105 13 {Kneser, {15, 2}}
81 2592 100 10 {RookComplement, {10, 10}}
84 840 220 8 {Kneser, {12, 3}}
84 1722 169 13 {Paley, 169}
90 1485 651 N/A {Grassmann, {2, {6, 2}}}
98 1225 1395 N/A {Grassmann, {2, {6, 3}}}
98 2107 225 False N/A {Pasechnik, 4}
100 1800 416 N/A G24Graph
105 3570 176 44 {StronglyRegular, {{176, 105, 68, 54}, 1}}
105 3780 162 54 McLaughlinGraphSubconstituent2
110 1540 672 N/A MoscowSoicherGraph
110 2035 243 N/A DelsarteGraph
112 56 729 N/A GamesGraph
112 1680 275 N/A McLaughlinGraph
112 2016 253 N/A {StronglyRegular, {{253, 112, 36, 60}, 1}}
117 2106 378 N/A O73Graph
117 2106 1134 N/A NortonSmithGraph
120 2100 286 9 {Kneser, {13, 3}}
126 315 715 7 {Kneser, {13, 4}}
153 5508 324 False N/A JankoKharaghaniTonchevGraph
162 5913 361 N/A {Pasechnik, 5}
165 4620 364 10 {Kneser, {14, 3}}
171 9435 256 16 {Keller, 4}
175 6300 352 N/A TaylorGraphFromHigmanSims1
175 8925 352 N/A TaylorGraphFromHigmanSims2
176 3520 672 N/A U62Graph
187 5423 540 N/A U42Graph540
192 4608 765 False N/A IoninKharaghaniGraph
210 1575 1001 8 {Kneser, {14, 4}}
220 9240 455 11 {Kneser, {15, 3}}
231 8085 1024 N/A TruncatedBinaryGolayCodeCosetDistance2Graph
243 9963 784 N/A {Mathon, 0}
270 13230 784 N/A {Mathon, 1}
275 15400 552 N/A TaylorGraphFromConway2
275 17875 540 False N/A {GoethalsSeidelBlockDesign, {5, 11}}
275 22275 552 N/A TaylorGraphFromConway1
297 17226 784 N/A {Mathon, 2}
330 5775 1365 9 {Kneser, {15, 4}}
375 28125 936 False N/A JankoKharaghaniGraph936
416 20800 1782 N/A SuzukiGraph
495 90585 672 N/A U62ComplementGraph
776 225990 1024 32 {Keller, 5}