 |
2 |
1 |
3 |
 |
3 |
TriangleGraph |
 |
3 |
1 |
6 |
 |
3 |
{Prism, 3} |
 |
3 |
1 |
12 |
 |
3 |
{Cubic, {12, 26}} |
 |
3 |
1 |
12 |
 |
3 |
TruncatedTetrahedralGraph |
 |
3 |
1 |
18 |
 |
3 |
{CubicTransitive, 23} |
 |
3 |
1 |
18 |
 |
3 |
TruncatedTriangularPrismGraph |
 |
3 |
1 |
24 |
 |
3 |
{Cubic, {24, 5}} |
 |
3 |
1 |
24 |
 |
3 |
TruncatedCubicalGraph |
 |
3 |
1 |
30 |
 |
3 |
TriangleReplacedPetersenGraph |
 |
3 |
1 |
36 |
 |
3 |
{Cubic, {36, 2}} |
 |
3 |
1 |
60 |
 |
3 |
TruncatedDodecahedralGraph |
 |
3 |
1 |
78 |
 |
3 |
{Cubic, {78, 1}} |
 |
3 |
1 |
84 |
 |
3 |
TriangleReplacedCoxeterGraph |
 |
3 |
3 |
4 |
 |
4 |
TetrahedralGraph |
 |
4 |
1 |
9 |
 |
3 |
{Circulant, {9, {1, 3}}} |
 |
4 |
1 |
12 |
 |
3 |
{Circulant, {12, {1, 4}}} |
 |
4 |
1 |
12 |
 |
3 |
{Circulant, {12, {3, 4}}} |
 |
4 |
1 |
12 |
 |
3 |
{Quartic, {12, 2}} |
 |
4 |
1 |
12 |
 |
3 |
{Quartic, {12, 11}} |
 |
4 |
1 |
12 |
 |
3 |
{Quartic, {12, 19}} |
 |
4 |
1 |
12 |
 |
3 |
{Quartic, {12, 20}} |
 |
4 |
1 |
12 |
 |
3 |
{QuarticTransitive, 17} |
 |
4 |
1 |
12 |
 |
3 |
{RegularNonplanarDiameter, {4, 2, 12, 18}} |
 |
4 |
1 |
15 |
 |
3 |
{Circulant, {15, {1, 5}}} |
 |
4 |
1 |
15 |
 |
3 |
{Circulant, {15, {3, 5}}} |
 |
4 |
1 |
15 |
 |
4 |
{Quartic, {15, 4}} |
 |
4 |
1 |
18 |
 |
3 |
{Circulant, {18, {1, 6}}} |
 |
4 |
1 |
18 |
 |
3 |
{QuarticTransitive, 59} |
 |
4 |
1 |
18 |
 |
3 |
{TorusGrid, {3, 6}} |
 |
4 |
1 |
21 |
 |
3 |
{Circulant, {21, {3, 7}}} |
 |
4 |
1 |
21 |
 |
4 |
{BracedHeptagon, {42, 1}} |
 |
4 |
1 |
24 |
 |
3 |
{Circulant, {24, {3, 8}}} |
 |
4 |
1 |
24 |
 |
3 |
{JohnsonSkeleton, 37} |
 |
4 |
1 |
24 |
 |
3 |
SmallRhombicuboctahedralGraph |
 |
4 |
1 |
27 |
 |
3 |
{Quartic, {27, 1}} |
 |
4 |
1 |
27 |
 |
3 |
{TorusGrid, {3, 9}} |
 |
4 |
1 |
30 |
 |
3 |
{Circulant, {30, {3, 10}}} |
 |
4 |
1 |
30 |
 |
3 |
{JohnsonSkeleton, 38} |
 |
4 |
1 |
30 |
 |
3 |
{JohnsonSkeleton, 39} |
 |
4 |
1 |
60 |
 |
3 |
DodecicosahedralGraph |
 |
4 |
1 |
60 |
 |
3 |
{JohnsonSkeleton, 72} |
 |
4 |
1 |
60 |
 |
3 |
{JohnsonSkeleton, 73} |
 |
4 |
1 |
60 |
 |
3 |
{JohnsonSkeleton, 74} |
 |
4 |
1 |
60 |
 |
3 |
{JohnsonSkeleton, 75} |
 |
4 |
1 |
60 |
 |
3 |
{PermutationStar, {5, 3}} |
 |
4 |
1 |
60 |
 |
3 |
SmallRhombicosidodecahedralGraph |
 |
4 |
2 |
9 |
False |
3 |
{Quartic, {9, 11}} |
 |
4 |
2 |
9 |
 |
3 |
{GeneralizedQuadrangle, {2, 1}} |
 |
4 |
2 |
12 |
False |
3 |
{JohnsonSkeleton, 27} |
 |
4 |
2 |
12 |
False |
3 |
{Quartic, {12, 13}} |
 |
4 |
2 |
12 |
False |
3 |
{RegularNonplanarDiameter, {4, 2, 12, 1}} |
 |
4 |
2 |
12 |
 |
3 |
CuboctahedralGraph |
 |
4 |
2 |
15 |
 |
4 |
PetersenLineGraph |
 |
4 |
2 |
21 |
 |
3 |
{GeneralizedHexagon, {2, 1}} |
 |
4 |
2 |
24 |
 |
3 |
MoebiusKantorLineGraph |
 |
4 |
2 |
27 |
 |
3 |
PappusLineGraph |
 |
4 |
2 |
30 |
False |
3 |
{JohnsonSkeleton, 34} |
 |
4 |
2 |
30 |
 |
3 |
DesarguesLineGraph |
 |
4 |
2 |
30 |
 |
3 |
IcosidodecahedralGraph |
 |
4 |
2 |
36 |
 |
3 |
TruncatedOctahedralLineGraph |
 |
4 |
2 |
42 |
 |
3 |
CoxeterLineGraph |
 |
4 |
2 |
45 |
 |
3 |
{GeneralizedOctagon, {2, 1}} |
 |
4 |
2 |
72 |
 |
3 |
GreatRhombicuboctahedralLineGraph |
 |
4 |
2 |
90 |
 |
3 |
TruncatedIcosahedralLineGraph |
 |
4 |
2 |
180 |
 |
3 |
GreatRhombicosidodecahedralLineGraph |
 |
4 |
2 |
189 |
 |
3 |
{GeneralizedDodecagon, {2, 1}} |
 |
4 |
3 |
7 |
 |
4 |
{Circulant, {7, {1, 2}}} |
 |
4 |
3 |
8 |
 |
4 |
{Antiprism, 4} |
 |
4 |
3 |
8 |
 |
4 |
{Rook, {2, 4}} |
 |
4 |
3 |
9 |
 |
3 |
{Circulant, {9, {1, 2}}} |
 |
4 |
3 |
10 |
 |
4 |
{Antiprism, 5} |
 |
4 |
3 |
11 |
 |
4 |
{Circulant, {11, {1, 2}}} |
 |
4 |
3 |
12 |
 |
3 |
{Antiprism, 6} |
 |
4 |
3 |
12 |
 |
4 |
{QuarticTransitive, 19} |
 |
4 |
3 |
13 |
 |
4 |
{Circulant, {13, {1, 2}}} |
 |
4 |
3 |
14 |
 |
4 |
{Antiprism, 7} |
 |
4 |
3 |
15 |
 |
3 |
{Circulant, {15, {1, 2}}} |
 |
4 |
3 |
16 |
 |
4 |
{Antiprism, 8} |
 |
4 |
3 |
16 |
 |
4 |
{QuarticTransitive, 50} |
 |
4 |
3 |
17 |
 |
4 |
{Circulant, {17, {1, 2}}} |
 |
4 |
3 |
18 |
 |
3 |
{Antiprism, 9} |
 |
4 |
3 |
19 |
 |
4 |
{Circulant, {19, {1, 2}}} |
 |
4 |
3 |
20 |
 |
4 |
{Antiprism, 10} |
 |
4 |
3 |
20 |
 |
4 |
{PermutationStar, {5, 2}} |
 |
4 |
3 |
22 |
 |
4 |
{Antiprism, 11} |
 |
4 |
3 |
24 |
 |
3 |
{Antiprism, 12} |
 |
4 |
3 |
26 |
 |
4 |
{Antiprism, 13} |
 |
4 |
3 |
28 |
 |
4 |
{Antiprism, 14} |
 |
4 |
3 |
30 |
 |
3 |
{Antiprism, 15} |
 |
4 |
3 |
32 |
 |
4 |
{Antiprism, 16} |
 |
4 |
3 |
34 |
 |
4 |
{Antiprism, 17} |
 |
4 |
3 |
36 |
 |
3 |
{Antiprism, 18} |
 |
4 |
3 |
38 |
 |
4 |
{Antiprism, 19} |
 |
4 |
3 |
40 |
 |
4 |
{Antiprism, 20} |
 |
4 |
3 |
42 |
 |
3 |
{Antiprism, 21} |
 |
4 |
3 |
44 |
 |
4 |
{Antiprism, 22} |
 |
4 |
3 |
46 |
 |
4 |
{Antiprism, 23} |
 |
4 |
3 |
48 |
 |
3 |
{Antiprism, 24} |
 |
4 |
3 |
50 |
 |
4 |
{Antiprism, 25} |
 |
4 |
3 |
60 |
 |
4 |
TetrahedronReplacedPetersenLineGraph |
 |
4 |
3 |
168 |
 |
4 |
TetrahedronReplacedCoxeterLineGraph |
 |
4 |
4 |
6 |
 |
3 |
OctahedralGraph |
 |
4 |
6 |
5 |
 |
5 |
PentatopeGraph |
 |
5 |
1 |
12 |
 |
3 |
{Circulant, {12, {1, 4, 6}}} |
 |
5 |
1 |
18 |
 |
3 |
{Circulant, {18, {1, 6, 9}}} |
 |
5 |
1 |
18 |
 |
3 |
{Circulant, {18, {2, 6, 9}}} |
 |
5 |
1 |
18 |
 |
3 |
GraphCartesianProductOfK33AndK3 |
 |
5 |
1 |
360 |
 |
3 |
{PermutationStar, {6, 4}} |
 |
5 |
2 |
12 |
 |
4 |
{VertexTransitive, {12, 27}} |
 |
5 |
2 |
18 |
 |
4 |
{NoncayleyTransitive, {18, 1}} |
 |
5 |
3 |
10 |
 |
4 |
{Circulant, {10, {1, 2, 5}}} |
 |
5 |
3 |
12 |
 |
3 |
{VertexTransitive, {12, 30}} |
 |
5 |
3 |
12 |
 |
4 |
{Circulant, {12, {1, 2, 6}}} |
 |
5 |
3 |
12 |
 |
4 |
{Circulant, {12, {1, 3, 6}}} |
 |
5 |
3 |
12 |
 |
4 |
{Circulant, {12, {2, 3, 6}}} |
 |
5 |
3 |
14 |
 |
4 |
{Circulant, {14, {1, 2, 7}}} |
 |
5 |
3 |
14 |
 |
4 |
{Circulant, {14, {2, 4, 7}}} |
 |
5 |
3 |
14 |
 |
4 |
{VertexTransitive, {14, 16}} |
 |
5 |
3 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 8}}} |
 |
5 |
3 |
16 |
 |
4 |
{Circulant, {16, {1, 4, 8}}} |
 |
5 |
3 |
16 |
 |
4 |
{NoncayleyTransitive, {16, 2}} |
 |
5 |
3 |
16 |
 |
4 |
{ZeroTwoNonbipartite, {5, 3}} |
 |
5 |
3 |
18 |
 |
3 |
{Circulant, {18, {2, 4, 9}}} |
 |
5 |
3 |
18 |
 |
4 |
{Circulant, {18, {1, 2, 9}}} |
 |
5 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 10}}} |
 |
5 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 10}}} |
 |
5 |
3 |
20 |
 |
4 |
{Circulant, {20, {2, 5, 10}}} |
 |
5 |
3 |
20 |
 |
4 |
{Circulant, {20, {4, 5, 10}}} |
 |
5 |
3 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 10}} |
 |
5 |
3 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 11}} |
 |
5 |
3 |
26 |
 |
4 |
{NoncayleyTransitive, {26, 3}} |
 |
5 |
3 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 4}} |
 |
5 |
3 |
60 |
 |
4 |
SnubDodecadodecahedralGraph |
 |
5 |
3 |
120 |
 |
4 |
{PermutationStar, {6, 3}} |
 |
5 |
4 |
12 |
 |
3 |
{VertexTransitive, {12, 28}} |
 |
5 |
4 |
12 |
 |
3 |
{VertexTransitive, {12, 32}} |
 |
5 |
4 |
12 |
 |
4 |
{Rook, {3, 4}} |
 |
5 |
4 |
24 |
 |
3 |
SnubCubicalGraph |
 |
5 |
4 |
60 |
 |
4 |
SnubDodecahedralGraph |
 |
5 |
5 |
12 |
 |
4 |
IcosahedralGraph |
 |
5 |
6 |
8 |
 |
4 |
{Circulant, {8, {1, 2, 4}}} |
 |
5 |
6 |
8 |
 |
4 |
{Circulant, {8, {1, 3, 4}}} |
 |
5 |
6 |
10 |
 |
5 |
{Circulant, {10, {1, 4, 5}}} |
 |
5 |
6 |
10 |
 |
5 |
{Rook, {2, 5}} |
 |
5 |
6 |
12 |
 |
4 |
{Circulant, {12, {1, 5, 6}}} |
 |
5 |
6 |
14 |
 |
5 |
{Circulant, {14, {1, 6, 7}}} |
 |
5 |
6 |
16 |
 |
4 |
{Circulant, {16, {1, 7, 8}}} |
 |
5 |
6 |
18 |
 |
5 |
{Circulant, {18, {1, 8, 9}}} |
 |
5 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 9, 10}}} |
 |
5 |
6 |
22 |
 |
5 |
{Circulant, {22, {1, 10, 11}}} |
 |
5 |
6 |
24 |
 |
4 |
{Circulant, {24, {1, 11, 12}}} |
 |
5 |
6 |
30 |
 |
5 |
{PermutationStar, {6, 2}} |
 |
5 |
10 |
6 |
 |
6 |
{Complete, 6} |
 |
6 |
1 |
15 |
 |
3 |
{Circulant, {15, {1, 3, 5}}} |
 |
6 |
1 |
18 |
 |
3 |
{Circulant, {18, {1, 4, 6}}} |
 |
6 |
1 |
18 |
 |
3 |
{Circulant, {18, {1, 6, 8}}} |
 |
6 |
2 |
63 |
 |
4 |
{UnitDistance, {63, 1}} |
 |
6 |
3 |
13 |
 |
4 |
{Circulant, {13, {1, 2, 5}}} |
 |
6 |
3 |
14 |
 |
4 |
{Circulant, {14, {1, 2, 5}}} |
 |
6 |
3 |
14 |
 |
4 |
{Circulant, {14, {1, 4, 6}}} |
 |
6 |
3 |
15 |
 |
4 |
{Circulant, {15, {1, 2, 6}}} |
 |
6 |
3 |
15 |
 |
4 |
{GeneralizedQuadrangle, {2, 2}} |
 |
6 |
3 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 5}}} |
 |
6 |
3 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 6}}} |
 |
6 |
3 |
16 |
 |
4 |
{Circulant, {16, {1, 4, 6}}} |
 |
6 |
3 |
16 |
 |
4 |
{NoncayleyTransitive, {16, 3}} |
 |
6 |
3 |
17 |
 |
4 |
{Circulant, {17, {1, 2, 5}}} |
 |
6 |
3 |
17 |
 |
4 |
{Circulant, {17, {1, 2, 7}}} |
 |
6 |
3 |
17 |
 |
5 |
{Circulant, {17, {1, 2, 6}}} |
 |
6 |
3 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 5}}} |
 |
6 |
3 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 7}}} |
 |
6 |
3 |
18 |
 |
3 |
{Circulant, {18, {1, 4, 8}}} |
 |
6 |
3 |
18 |
 |
3 |
{Circulant, {18, {2, 3, 4}}} |
 |
6 |
3 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 5}}} |
 |
6 |
3 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 6}}} |
 |
6 |
3 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 7}}} |
 |
6 |
3 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 8}}} |
 |
6 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5}}} |
 |
6 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 6}}} |
 |
6 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 7}}} |
 |
6 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 8}}} |
 |
6 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 6, 8}}} |
 |
6 |
3 |
20 |
 |
4 |
{Circulant, {20, {2, 4, 5}}} |
 |
6 |
3 |
20 |
 |
4 |
DitrigonalIcosidodecahedralGraph |
 |
6 |
3 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 13}} |
 |
6 |
3 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 15}} |
 |
6 |
3 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 16}} |
 |
6 |
3 |
24 |
 |
3 |
{ArcTransitive, {24, 9}} |
 |
6 |
3 |
26 |
 |
4 |
{NoncayleyTransitive, {26, 5}} |
 |
6 |
3 |
27 |
 |
3 |
GrayConfigurationMengerDual |
 |
6 |
3 |
27 |
 |
3 |
{Hamming, {3, 3}} |
 |
6 |
3 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 5}} |
 |
6 |
3 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 7}} |
 |
6 |
3 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 8}} |
 |
6 |
3 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {6, 10}} |
 |
6 |
3 |
45 |
 |
4 |
HalvedFosterGraph |
 |
6 |
3 |
60 |
 |
3 |
{Arrangement, {5, 3}} |
 |
6 |
3 |
63 |
 |
4 |
{GeneralizedHexagonAndDualPointGraph, {{2, 2}, 1}} |
 |
6 |
3 |
63 |
 |
4 |
{GeneralizedHexagonAndDualPointGraph, {{2, 2}, 2}} |
 |
6 |
4 |
12 |
 |
3 |
{Circulant, {12, {2, 3, 4}}} |
 |
6 |
4 |
15 |
 |
3 |
{Circulant, {15, {1, 2, 5}}} |
 |
6 |
4 |
18 |
 |
3 |
{Circulant, {18, {1, 3, 6}}} |
 |
6 |
4 |
18 |
 |
3 |
{Circulant, {18, {2, 3, 6}}} |
 |
6 |
4 |
18 |
 |
4 |
{Circulant, {18, {1, 2, 6}}} |
 |
6 |
4 |
24 |
 |
3 |
{NoncayleyTransitive, {24, 6}} |
 |
6 |
4 |
60 |
 |
3 |
GreatSnubDodecicosidodecahedralGraph |
 |
6 |
4 |
60 |
 |
4 |
SnubIcosidodecadodecahedralGraph |
 |
6 |
5 |
12 |
 |
4 |
{VertexTransitive, {12, 40}} |
 |
6 |
5 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 5}} |
 |
6 |
5 |
24 |
 |
4 |
{ZeroTwoNonbipartite, {6, 7}} |
 |
6 |
5 |
60 |
 |
4 |
SmallSnubIcosicosidodecahedralGraph |
 |
6 |
6 |
11 |
 |
4 |
{Circulant, {11, {1, 2, 4}}} |
 |
6 |
6 |
12 |
 |
3 |
{RookComplement, {3, 4}} |
 |
6 |
6 |
12 |
 |
4 |
{VertexTransitive, {12, 47}} |
 |
6 |
6 |
12 |
 |
4 |
{VertexTransitive, {12, 48}} |
 |
6 |
6 |
13 |
 |
5 |
{Circulant, {13, {1, 2, 4}}} |
 |
6 |
6 |
13 |
 |
5 |
{Paley, 13} |
 |
6 |
6 |
14 |
 |
4 |
{Circulant, {14, {1, 2, 4}}} |
 |
6 |
6 |
14 |
 |
4 |
{Circulant, {14, {1, 2, 6}}} |
 |
6 |
6 |
14 |
 |
4 |
{Circulant, {14, {1, 3, 4}}} |
 |
6 |
6 |
14 |
 |
5 |
{VertexTransitive, {14, 26}} |
 |
6 |
6 |
15 |
 |
3 |
{Circulant, {15, {1, 2, 4}}} |
 |
6 |
6 |
15 |
 |
4 |
{Circulant, {15, {1, 3, 4}}} |
 |
6 |
6 |
15 |
 |
5 |
{Circulant, {15, {1, 3, 6}}} |
 |
6 |
6 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 4}}} |
 |
6 |
6 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 7}}} |
 |
6 |
6 |
16 |
 |
4 |
{Circulant, {16, {1, 3, 4}}} |
 |
6 |
6 |
16 |
 |
4 |
{KleinBottleTriangulation, {16, 1}} |
 |
6 |
6 |
16 |
 |
4 |
{KleinBottleTriangulation, {16, 2}} |
 |
6 |
6 |
16 |
 |
4 |
{Rook, {4, 4}} |
 |
6 |
6 |
16 |
 |
4 |
ShrikhandeGraph |
 |
6 |
6 |
16 |
 |
4 |
{TorusTriangulation, {16, 2}} |
 |
6 |
6 |
17 |
 |
4 |
{Circulant, {17, {1, 2, 4}}} |
 |
6 |
6 |
17 |
 |
5 |
{Circulant, {17, {1, 3, 4}}} |
 |
6 |
6 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 4}}} |
 |
6 |
6 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 8}}} |
 |
6 |
6 |
18 |
 |
3 |
{Circulant, {18, {1, 4, 5}}} |
 |
6 |
6 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 4}}} |
 |
6 |
6 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 4}}} |
 |
6 |
6 |
19 |
 |
4 |
{Circulant, {19, {1, 3, 4}}} |
 |
6 |
6 |
19 |
 |
5 |
{Cyclotomic, 19} |
 |
6 |
6 |
20 |
 |
4 |
{Arrangement, {5, 2}} |
 |
6 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 4}}} |
 |
6 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 9}}} |
 |
6 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 3, 4}}} |
 |
6 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 4, 5}}} |
 |
6 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 6}}} |
 |
6 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 8, 9}}} |
 |
6 |
6 |
20 |
 |
4 |
{KleinBottleTriangulation, {20, 2}} |
 |
6 |
6 |
20 |
 |
4 |
{KleinBottleTriangulation, {20, 3}} |
 |
6 |
6 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 14}} |
 |
6 |
6 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 8}}} |
 |
6 |
6 |
20 |
 |
5 |
{Circulant, {20, {4, 5, 8}}} |
 |
6 |
6 |
20 |
 |
5 |
{KleinBottleTriangulation, {20, 4}} |
 |
6 |
6 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 18}} |
 |
6 |
6 |
21 |
 |
3 |
{Circulant, {21, {1, 4, 5}}} |
 |
6 |
6 |
25 |
 |
4 |
{ArcTransitive, {25, 3}} |
 |
6 |
6 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 6}} |
 |
6 |
6 |
27 |
 |
3 |
{ArcTransitive, {27, 7}} |
 |
6 |
6 |
28 |
 |
4 |
{ArcTransitive, {28, 6}} |
 |
6 |
6 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 6}} |
 |
6 |
6 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 9}} |
 |
6 |
6 |
31 |
 |
4 |
{Circulant, {31, {1, 5, 6}}} |
 |
6 |
6 |
52 |
 |
4 |
{GeneralizedHexagon, {3, 1}} |
 |
6 |
6 |
160 |
 |
4 |
{GeneralizedOctagon, {3, 1}} |
 |
6 |
7 |
12 |
False |
4 |
{Sextic, {12, 2}} |
 |
6 |
7 |
12 |
 |
3 |
{Circulant, {12, {1, 2, 4}}} |
 |
6 |
7 |
12 |
 |
3 |
{Circulant, {12, {1, 4, 5}}} |
 |
6 |
7 |
12 |
 |
4 |
{Circulant, {12, {1, 3, 4}}} |
 |
6 |
7 |
12 |
 |
4 |
{KleinBottleTriangulation, {12, 3}} |
 |
6 |
7 |
12 |
 |
4 |
{VertexTransitive, {12, 45}} |
 |
6 |
7 |
15 |
 |
3 |
{Circulant, {15, {1, 4, 5}}} |
 |
6 |
7 |
15 |
 |
4 |
{Circulant, {15, {1, 5, 6}}} |
 |
6 |
7 |
15 |
 |
4 |
{KleinBottleTriangulation, {15, 3}} |
 |
6 |
7 |
15 |
 |
5 |
{Rook, {3, 5}} |
 |
6 |
7 |
18 |
 |
3 |
{TorusTriangulation, {18, 2}} |
 |
6 |
7 |
18 |
 |
4 |
{Circulant, {18, {1, 5, 6}}} |
 |
6 |
7 |
18 |
 |
4 |
{KleinBottleTriangulation, {18, 2}} |
 |
6 |
7 |
24 |
 |
4 |
CuboctahedralLineGraph |
 |
6 |
7 |
60 |
 |
4 |
IcosidodecahedralLineGraph |
 |
6 |
8 |
12 |
 |
4 |
OctahedralLineGraph |
 |
6 |
9 |
9 |
 |
3 |
{CompleteTripartite, {3, 3, 3}} |
 |
6 |
9 |
10 |
False |
5 |
{Sextic, {10, 3}} |
 |
6 |
9 |
10 |
False |
5 |
{Sextic, {10, 10}} |
 |
6 |
9 |
10 |
False |
5 |
{Sextic, {10, 13}} |
 |
6 |
9 |
10 |
 |
5 |
{Circulant, {10, {1, 2, 3}}} |
 |
6 |
9 |
10 |
 |
5 |
{Circulant, {10, {1, 2, 4}}} |
 |
6 |
9 |
10 |
 |
5 |
{Triangular, 5} |
 |
6 |
9 |
11 |
False |
6 |
{Sextic, {11, 12}} |
 |
6 |
9 |
11 |
 |
6 |
{Circulant, {11, {1, 2, 3}}} |
 |
6 |
9 |
12 |
 |
4 |
{Circulant, {12, {1, 2, 3}}} |
 |
6 |
9 |
13 |
 |
5 |
{Circulant, {13, {1, 2, 3}}} |
 |
6 |
9 |
14 |
 |
5 |
{Circulant, {14, {1, 2, 3}}} |
 |
6 |
9 |
15 |
 |
5 |
{Circulant, {15, {1, 2, 3}}} |
 |
6 |
9 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 3}}} |
 |
6 |
9 |
17 |
 |
5 |
{Circulant, {17, {1, 2, 3}}} |
 |
6 |
9 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3}}} |
 |
6 |
9 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3}}} |
 |
6 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3}}} |
 |
6 |
10 |
9 |
False |
5 |
{Sextic, {9, 1}} |
 |
6 |
10 |
9 |
 |
5 |
{Circulant, {9, {1, 2, 3}}} |
 |
6 |
10 |
12 |
 |
6 |
{Rook, {2, 6}} |
 |
6 |
10 |
48 |
 |
6 |
K6ReplacedDoubledCubicalGraph |
 |
6 |
10 |
96 |
 |
6 |
K6ReplacedDoubledMoebiusKantorGraph |
 |
6 |
12 |
8 |
 |
4 |
SixteenCellGraph |
 |
6 |
15 |
7 |
 |
7 |
{Complete, 7} |
 |
7 |
1 |
18 |
 |
3 |
{Circulant, {18, {1, 4, 6, 9}}} |
 |
7 |
3 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 5, 8}}} |
 |
7 |
3 |
18 |
 |
3 |
{Circulant, {18, {2, 3, 4, 9}}} |
 |
7 |
3 |
18 |
 |
4 |
{Circulant, {18, {1, 2, 5, 9}}} |
 |
7 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 6, 10}}} |
 |
7 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 7, 10}}} |
 |
7 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 3, 5, 10}}} |
 |
7 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 8, 10}}} |
 |
7 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 6, 8, 10}}} |
 |
7 |
3 |
20 |
 |
4 |
{Circulant, {20, {2, 5, 6, 10}}} |
 |
7 |
3 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 22}} |
 |
7 |
3 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 8}} |
 |
7 |
3 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 10}} |
 |
7 |
3 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 11}} |
 |
7 |
3 |
26 |
 |
4 |
{NoncayleyTransitive, {26, 7}} |
 |
7 |
3 |
26 |
 |
4 |
{NoncayleyTransitive, {26, 10}} |
 |
7 |
3 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {7, 17}} |
 |
7 |
3 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {7, 18}} |
 |
7 |
3 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {7, 19}} |
 |
7 |
3 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {7, 20}} |
 |
7 |
3 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {7, 21}} |
 |
7 |
3 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {7, 25}} |
 |
7 |
3 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {7, 26}} |
 |
7 |
3 |
40 |
 |
4 |
{ZeroTwoNonbipartite, {7, 36}} |
 |
7 |
3 |
56 |
 |
4 |
{ZeroTwoNonbipartite, {7, 49}} |
 |
7 |
3 |
64 |
 |
4 |
{ZeroTwoNonbipartite, {7, 54}} |
 |
7 |
4 |
18 |
 |
4 |
{Circulant, {18, {1, 2, 6, 9}}} |
 |
7 |
4 |
24 |
 |
4 |
{Nuciferous, {24, 1}} |
 |
7 |
4 |
24 |
 |
4 |
{Nuciferous, {24, 2}} |
 |
7 |
5 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 9}} |
 |
7 |
5 |
24 |
 |
4 |
{ZeroTwoNonbipartite, {7, 1}} |
 |
7 |
5 |
24 |
 |
4 |
{ZeroTwoNonbipartite, {7, 4}} |
 |
7 |
5 |
24 |
 |
5 |
{ZeroTwoNonbipartite, {7, 2}} |
 |
7 |
5 |
24 |
 |
5 |
{ZeroTwoNonbipartite, {7, 3}} |
 |
7 |
5 |
48 |
 |
4 |
{ZeroTwoNonbipartite, {7, 46}} |
 |
7 |
6 |
14 |
 |
4 |
{Circulant, {14, {1, 2, 4, 7}}} |
 |
7 |
6 |
16 |
 |
4 |
{Circulant, {16, {1, 3, 5, 8}}} |
 |
7 |
6 |
16 |
 |
4 |
{Circulant, {16, {1, 4, 6, 8}}} |
 |
7 |
6 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 4, 9}}} |
 |
7 |
6 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 4, 9}}} |
 |
7 |
6 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 8, 9}}} |
 |
7 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 4, 10}}} |
 |
7 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 10}}} |
 |
7 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 3, 4, 10}}} |
 |
7 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 3, 7, 10}}} |
 |
7 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 6, 9, 10}}} |
 |
7 |
6 |
20 |
 |
4 |
{Circulant, {20, {2, 4, 5, 10}}} |
 |
7 |
6 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 21}} |
 |
7 |
6 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 6, 10}}} |
 |
7 |
6 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 8, 10}}} |
 |
7 |
6 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 9, 10}}} |
 |
7 |
6 |
24 |
 |
4 |
{ZeroTwoNonbipartite, {7, 5}} |
 |
7 |
6 |
24 |
 |
4 |
{ZeroTwoNonbipartite, {7, 6}} |
 |
7 |
6 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 8}} |
 |
7 |
6 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 9}} |
 |
7 |
6 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 11}} |
 |
7 |
6 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 12}} |
 |
7 |
6 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {7, 27}} |
 |
7 |
6 |
32 |
 |
4 |
{ZeroTwoNonbipartite, {7, 28}} |
 |
7 |
7 |
18 |
 |
4 |
{Circulant, {18, {1, 5, 6, 9}}} |
 |
7 |
7 |
18 |
 |
5 |
{Circulant, {18, {1, 6, 8, 9}}} |
 |
7 |
7 |
24 |
 |
4 |
KleinGraph24 |
 |
7 |
9 |
12 |
 |
4 |
{Circulant, {12, {1, 3, 5, 6}}} |
 |
7 |
9 |
14 |
 |
4 |
{VertexTransitive, {14, 30}} |
 |
7 |
9 |
14 |
 |
5 |
{Circulant, {14, {1, 2, 3, 7}}} |
 |
7 |
9 |
14 |
 |
5 |
{Circulant, {14, {1, 2, 5, 7}}} |
 |
7 |
9 |
14 |
 |
5 |
{Circulant, {14, {1, 4, 6, 7}}} |
 |
7 |
9 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 4, 8}}} |
 |
7 |
9 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 6, 8}}} |
 |
7 |
9 |
16 |
 |
4 |
{Circulant, {16, {1, 3, 4, 8}}} |
 |
7 |
9 |
16 |
 |
4 |
{NoncayleyTransitive, {16, 4}} |
 |
7 |
9 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 3, 8}}} |
 |
7 |
9 |
16 |
 |
6 |
{Circulant, {16, {1, 4, 7, 8}}} |
 |
7 |
9 |
18 |
 |
3 |
{Circulant, {18, {2, 4, 8, 9}}} |
 |
7 |
9 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 9}}} |
 |
7 |
9 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 7, 9}}} |
 |
7 |
9 |
18 |
 |
5 |
{Circulant, {18, {1, 4, 8, 9}}} |
 |
7 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 10}}} |
 |
7 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 4, 5, 10}}} |
 |
7 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 6, 10}}} |
 |
7 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 9, 10}}} |
 |
7 |
9 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 24}} |
 |
7 |
9 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 8, 10}}} |
 |
7 |
9 |
20 |
 |
5 |
{Circulant, {20, {2, 5, 8, 10}}} |
 |
7 |
9 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 20}} |
 |
7 |
9 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 23}} |
 |
7 |
9 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 25}} |
 |
7 |
9 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 26}} |
 |
7 |
9 |
20 |
 |
5 |
{Rook, {4, 5}} |
 |
7 |
9 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 13}} |
 |
7 |
9 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 10}} |
 |
7 |
10 |
12 |
 |
3 |
{VertexTransitive, {12, 51}} |
 |
7 |
10 |
12 |
 |
4 |
{Circulant, {12, {1, 3, 4, 6}}} |
 |
7 |
10 |
18 |
 |
5 |
{Circulant, {18, {2, 4, 6, 9}}} |
 |
7 |
10 |
18 |
 |
6 |
{Circulant, {18, {1, 3, 6, 9}}} |
 |
7 |
10 |
18 |
 |
6 |
{Circulant, {18, {2, 3, 6, 9}}} |
 |
7 |
10 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 12}} |
 |
7 |
10 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 13}} |
 |
7 |
11 |
12 |
 |
4 |
{VertexTransitive, {12, 54}} |
 |
7 |
11 |
18 |
 |
6 |
{Rook, {3, 6}} |
 |
7 |
12 |
12 |
 |
4 |
{Circulant, {12, {1, 2, 3, 6}}} |
 |
7 |
12 |
12 |
 |
4 |
{Circulant, {12, {1, 2, 5, 6}}} |
 |
7 |
12 |
12 |
 |
4 |
{VertexTransitive, {12, 55}} |
 |
7 |
12 |
14 |
 |
5 |
{Circulant, {14, {1, 2, 6, 7}}} |
 |
7 |
12 |
14 |
 |
5 |
{Circulant, {14, {1, 3, 4, 7}}} |
 |
7 |
12 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 7, 8}}} |
 |
7 |
12 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 8, 9}}} |
 |
7 |
12 |
18 |
 |
5 |
{Circulant, {18, {1, 4, 5, 9}}} |
 |
7 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 9, 10}}} |
 |
7 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 8, 9, 10}}} |
 |
7 |
13 |
12 |
 |
6 |
{Circulant, {12, {1, 2, 4, 6}}} |
 |
7 |
13 |
12 |
 |
6 |
{Circulant, {12, {1, 4, 5, 6}}} |
 |
7 |
13 |
12 |
 |
6 |
{Circulant, {12, {2, 3, 4, 6}}} |
 |
7 |
13 |
12 |
 |
6 |
{VertexTransitive, {12, 60}} |
 |
7 |
15 |
10 |
False |
5 |
{Septic, {10, 1}} |
 |
7 |
15 |
10 |
 |
5 |
{Circulant, {10, {1, 2, 4, 5}}} |
 |
7 |
15 |
10 |
 |
6 |
{Circulant, {10, {1, 2, 3, 5}}} |
 |
7 |
15 |
14 |
 |
7 |
{Rook, {2, 7}} |
 |
7 |
21 |
8 |
 |
8 |
{Complete, 8} |
 |
8 |
3 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 5, 8}}} |
 |
8 |
3 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 8}}} |
 |
8 |
3 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 16}} |
 |
8 |
3 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 17}} |
 |
8 |
3 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 18}} |
 |
8 |
3 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 19}} |
 |
8 |
3 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 14}} |
 |
8 |
4 |
18 |
 |
3 |
{Circulant, {18, {1, 3, 6, 8}}} |
 |
8 |
4 |
24 |
 |
3 |
{ArcTransitive, {24, 15}} |
 |
8 |
4 |
27 |
 |
3 |
{ArcTransitive, {27, 9}} |
 |
8 |
4 |
27 |
 |
3 |
{ArcTransitive, {27, 10}} |
 |
8 |
4 |
27 |
 |
5 |
{GeneralizedQuadrangleMinusSpread, {{2, 4}, 1}} |
 |
8 |
4 |
27 |
 |
5 |
{GeneralizedQuadrangleMinusSpread, {{2, 4}, 2}} |
 |
8 |
4 |
30 |
 |
4 |
{ArcTransitive, {30, 10}} |
 |
8 |
4 |
63 |
 |
5 |
{CompleteGraphSymplecticCover, {9, 7}} |
 |
8 |
4 |
81 |
 |
3 |
{Hamming, {4, 3}} |
 |
8 |
4 |
360 |
 |
3 |
{Arrangement, {6, 4}} |
 |
8 |
6 |
17 |
 |
4 |
{Circulant, {17, {1, 2, 4, 7}}} |
 |
8 |
6 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 4, 7}}} |
 |
8 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 4, 7}}} |
 |
8 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 9}}} |
 |
8 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 6, 9}}} |
 |
8 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 3, 5, 8}}} |
 |
8 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 8, 9}}} |
 |
8 |
6 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 32}} |
 |
8 |
6 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 33}} |
 |
8 |
6 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 9}}} |
 |
8 |
6 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 15}} |
 |
8 |
6 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 17}} |
 |
8 |
6 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 11}} |
 |
8 |
7 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 15}} |
 |
8 |
8 |
18 |
 |
3 |
{EdgeTransitive, {18, 19}} |
 |
8 |
8 |
21 |
 |
4 |
{ArcTransitive, {21, 7}} |
 |
8 |
8 |
24 |
 |
3 |
{ArcTransitive, {24, 14}} |
 |
8 |
8 |
24 |
 |
3 |
{ArcTransitive, {24, 17}} |
 |
8 |
8 |
24 |
 |
5 |
{NoncayleyTransitive, {24, 14}} |
 |
8 |
8 |
30 |
 |
4 |
{ArcTransitive, {30, 28}} |
 |
8 |
8 |
60 |
 |
3 |
GreatDirhombicosidodecahedralGraph |
 |
8 |
9 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 4, 7}}} |
 |
8 |
9 |
17 |
 |
5 |
{Circulant, {17, {1, 2, 6, 7}}} |
 |
8 |
9 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 4, 7}}} |
 |
8 |
9 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 5, 7}}} |
 |
8 |
9 |
18 |
 |
3 |
{Circulant, {18, {2, 3, 4, 8}}} |
 |
8 |
9 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 7}}} |
 |
8 |
9 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 4, 8}}} |
 |
8 |
9 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 4, 8}}} |
 |
8 |
9 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 5, 6}}} |
 |
8 |
9 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 7}}} |
 |
8 |
9 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 6, 8}}} |
 |
8 |
9 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 7, 8}}} |
 |
8 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 7}}} |
 |
8 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 6}}} |
 |
8 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 7}}} |
 |
8 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 6, 8}}} |
 |
8 |
9 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 8}}} |
 |
8 |
9 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 9}}} |
 |
8 |
9 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 7, 8}}} |
 |
8 |
9 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 6, 8}}} |
 |
8 |
9 |
20 |
 |
5 |
{Circulant, {20, {1, 6, 8, 9}}} |
 |
8 |
9 |
20 |
 |
5 |
{Circulant, {20, {2, 4, 5, 6}}} |
 |
8 |
9 |
20 |
 |
5 |
{Circulant, {20, {2, 4, 5, 8}}} |
 |
8 |
9 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 28}} |
 |
8 |
9 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 30}} |
 |
8 |
9 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 18}} |
 |
8 |
9 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 19}} |
 |
8 |
10 |
15 |
 |
4 |
{Circulant, {15, {1, 2, 5, 6}}} |
 |
8 |
10 |
18 |
 |
4 |
{Circulant, {18, {1, 2, 5, 6}}} |
 |
8 |
10 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 6, 7}}} |
 |
8 |
10 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 4, 6}}} |
 |
8 |
10 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 5, 6}}} |
 |
8 |
10 |
18 |
 |
5 |
{Circulant, {18, {1, 4, 6, 8}}} |
 |
8 |
10 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 20}} |
 |
8 |
11 |
18 |
 |
5 |
{NoncayleyTransitive, {18, 2}} |
 |
8 |
12 |
14 |
 |
4 |
{Circulant, {14, {1, 2, 5, 6}}} |
 |
8 |
12 |
15 |
 |
3 |
{RookComplement, {3, 5}} |
 |
8 |
12 |
15 |
 |
5 |
{Circulant, {15, {1, 2, 3, 7}}} |
 |
8 |
12 |
15 |
 |
5 |
{Circulant, {15, {1, 3, 4, 6}}} |
 |
8 |
12 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 3, 6}}} |
 |
8 |
12 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 3, 7}}} |
 |
8 |
12 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 4, 5}}} |
 |
8 |
12 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 6, 7}}} |
 |
8 |
12 |
16 |
 |
4 |
{Circulant, {16, {1, 3, 4, 5}}} |
 |
8 |
12 |
16 |
 |
4 |
{NoncayleyTransitive, {16, 5}} |
 |
8 |
12 |
17 |
 |
5 |
{Circulant, {17, {1, 2, 3, 6}}} |
 |
8 |
12 |
17 |
 |
5 |
{Circulant, {17, {1, 2, 3, 7}}} |
 |
8 |
12 |
17 |
 |
5 |
{Circulant, {17, {1, 2, 4, 5}}} |
 |
8 |
12 |
17 |
 |
5 |
{Circulant, {17, {1, 3, 4, 5}}} |
 |
8 |
12 |
17 |
 |
6 |
{Circulant, {17, {1, 2, 3, 8}}} |
 |
8 |
12 |
17 |
 |
6 |
{Paley, 17} |
 |
8 |
12 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 4, 5}}} |
 |
8 |
12 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 4, 8}}} |
 |
8 |
12 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 7, 8}}} |
 |
8 |
12 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 8}}} |
 |
8 |
12 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 4, 5}}} |
 |
8 |
12 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 4, 5}}} |
 |
8 |
12 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 6}}} |
 |
8 |
12 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 8}}} |
 |
8 |
12 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 9}}} |
 |
8 |
12 |
19 |
 |
5 |
{Circulant, {19, {1, 3, 4, 5}}} |
 |
8 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 6}}} |
 |
8 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 9}}} |
 |
8 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 4, 5}}} |
 |
8 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 8, 9}}} |
 |
8 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 6, 9}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 6}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 8}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 6, 8}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 5}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 7}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 8}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 6}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 8}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 9}}} |
 |
8 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 8, 9}}} |
 |
8 |
12 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 27}} |
 |
8 |
12 |
21 |
 |
5 |
{ArcTransitive, {21, 8}} |
 |
8 |
12 |
24 |
 |
3 |
TwentyFourCellGraph |
 |
8 |
12 |
25 |
 |
5 |
{Rook, {5, 5}} |
 |
8 |
12 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 16}} |
 |
8 |
12 |
30 |
 |
5 |
{Arrangement, {6, 2}} |
 |
8 |
12 |
105 |
 |
5 |
{GeneralizedHexagon, {4, 1}} |
 |
8 |
12 |
425 |
 |
5 |
{GeneralizedOctagon, {4, 1}} |
 |
8 |
13 |
15 |
 |
3 |
{Circulant, {15, {1, 2, 4, 5}}} |
 |
8 |
13 |
15 |
 |
5 |
{Circulant, {15, {1, 3, 5, 6}}} |
 |
8 |
13 |
15 |
 |
6 |
{Circulant, {15, {1, 3, 4, 5}}} |
 |
8 |
13 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 6}}} |
 |
8 |
13 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 4, 6}}} |
 |
8 |
13 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 6, 8}}} |
 |
8 |
13 |
18 |
 |
5 |
{Circulant, {18, {1, 4, 5, 6}}} |
 |
8 |
13 |
18 |
 |
5 |
{Circulant, {18, {2, 3, 4, 6}}} |
 |
8 |
13 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 21}} |
 |
8 |
13 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 22}} |
 |
8 |
13 |
24 |
 |
6 |
{Rook, {4, 6}} |
 |
8 |
14 |
30 |
 |
5 |
IcosahedralLineGraph |
 |
8 |
15 |
13 |
 |
5 |
{Circulant, {13, {1, 2, 3, 6}}} |
 |
8 |
15 |
14 |
 |
5 |
{Circulant, {14, {1, 2, 3, 5}}} |
 |
8 |
15 |
14 |
 |
5 |
{Circulant, {14, {1, 2, 3, 6}}} |
 |
8 |
15 |
14 |
 |
5 |
{VertexTransitive, {14, 41}} |
 |
8 |
15 |
15 |
 |
5 |
{Circulant, {15, {1, 2, 3, 6}}} |
 |
8 |
15 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 3, 5}}} |
 |
8 |
15 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 4, 6}}} |
 |
8 |
15 |
17 |
 |
6 |
{Circulant, {17, {1, 2, 3, 5}}} |
 |
8 |
15 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 5}}} |
 |
8 |
15 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 5}}} |
 |
8 |
15 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5}}} |
 |
8 |
15 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 31}} |
 |
8 |
15 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 29}} |
 |
8 |
16 |
12 |
 |
3 |
{CompleteTripartite, {4, 4, 4}} |
 |
8 |
16 |
15 |
 |
5 |
{Circulant, {15, {1, 2, 3, 5}}} |
 |
8 |
16 |
15 |
 |
5 |
{Triangular, 6} |
 |
8 |
16 |
21 |
 |
7 |
{Rook, {3, 7}} |
 |
8 |
18 |
12 |
 |
4 |
{Circulant, {12, {1, 2, 3, 5}}} |
 |
8 |
18 |
12 |
 |
4 |
{VertexTransitive, {12, 64}} |
 |
8 |
18 |
13 |
 |
7 |
{Circulant, {13, {1, 2, 3, 4}}} |
 |
8 |
18 |
13 |
 |
7 |
{Circulant, {13, {1, 2, 3, 5}}} |
 |
8 |
18 |
14 |
 |
7 |
{Circulant, {14, {1, 2, 3, 4}}} |
 |
8 |
18 |
14 |
 |
7 |
{Circulant, {14, {1, 2, 4, 6}}} |
 |
8 |
18 |
15 |
 |
5 |
{Circulant, {15, {1, 2, 3, 4}}} |
 |
8 |
18 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 3, 4}}} |
 |
8 |
18 |
17 |
 |
6 |
{Circulant, {17, {1, 2, 3, 4}}} |
 |
8 |
18 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4}}} |
 |
8 |
18 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4}}} |
 |
8 |
18 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4}}} |
 |
8 |
19 |
12 |
 |
6 |
{Circulant, {12, {1, 2, 3, 4}}} |
 |
8 |
19 |
12 |
 |
6 |
{Circulant, {12, {1, 3, 4, 5}}} |
 |
8 |
19 |
12 |
 |
6 |
{VertexTransitive, {12, 65}} |
 |
8 |
19 |
12 |
 |
6 |
{VertexTransitive, {12, 67}} |
 |
8 |
19 |
15 |
 |
8 |
{Circulant, {15, {1, 4, 5, 6}}} |
 |
8 |
19 |
18 |
 |
6 |
{Circulant, {18, {1, 5, 6, 7}}} |
 |
8 |
21 |
11 |
False |
6 |
{Octic, {11, 2}} |
 |
8 |
21 |
11 |
False |
6 |
{Octic, {11, 3}} |
 |
8 |
21 |
11 |
 |
6 |
{Circulant, {11, {1, 2, 3, 4}}} |
 |
8 |
21 |
16 |
 |
8 |
{Rook, {2, 8}} |
 |
8 |
24 |
10 |
 |
5 |
{CocktailParty, 5} |
 |
8 |
28 |
9 |
 |
9 |
{Complete, 9} |
 |
9 |
6 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 4, 7, 10}}} |
 |
9 |
6 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 28}} |
 |
9 |
6 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 29}} |
 |
9 |
8 |
24 |
 |
3 |
{NoncayleyTransitive, {24, 25}} |
 |
9 |
9 |
18 |
 |
3 |
{Circulant, {18, {2, 3, 4, 8, 9}}} |
 |
9 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 3, 5, 7, 10}}} |
 |
9 |
9 |
20 |
 |
4 |
{Circulant, {20, {1, 3, 5, 8, 10}}} |
 |
9 |
9 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 39}} |
 |
9 |
9 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 30}} |
 |
9 |
9 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 23}} |
 |
9 |
9 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 25}} |
 |
9 |
9 |
28 |
 |
5 |
{NoncayleyTransitive, {28, 13}} |
 |
9 |
9 |
28 |
 |
5 |
{NoncayleyTransitive, {28, 14}} |
 |
9 |
9 |
64 |
 |
4 |
{Doob, {1, 1}} |
 |
9 |
9 |
64 |
 |
4 |
{Hamming, {3, 4}} |
 |
9 |
9 |
120 |
 |
5 |
{Arrangement, {6, 3}} |
 |
9 |
10 |
18 |
 |
4 |
{Circulant, {18, {1, 2, 5, 6, 9}}} |
 |
9 |
11 |
24 |
 |
5 |
{NoncayleyTransitive, {24, 24}} |
 |
9 |
12 |
16 |
 |
4 |
{Circulant, {16, {1, 3, 5, 7, 8}}} |
 |
9 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 6, 10}}} |
 |
9 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 6, 10}}} |
 |
9 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 7, 10}}} |
 |
9 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 6, 9, 10}}} |
 |
9 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 3, 7, 9, 10}}} |
 |
9 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 6, 8, 10}}} |
 |
9 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 5, 8, 10}}} |
 |
9 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 8, 10}}} |
 |
9 |
12 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 6, 9, 10}}} |
 |
9 |
12 |
20 |
 |
6 |
{Circulant, {20, {1, 3, 4, 9, 10}}} |
 |
9 |
12 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 34}} |
 |
9 |
12 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 21}} |
 |
9 |
12 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 22}} |
 |
9 |
12 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 26}} |
 |
9 |
12 |
28 |
 |
5 |
{NoncayleyTransitive, {28, 12}} |
 |
9 |
12 |
28 |
 |
5 |
{NoncayleyTransitive, {28, 16}} |
 |
9 |
13 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 4, 6, 9}}} |
 |
9 |
14 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 23}} |
 |
9 |
15 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 4, 5, 8}}} |
 |
9 |
15 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 5, 9}}} |
 |
9 |
15 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 7, 9}}} |
 |
9 |
15 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 4, 7, 9}}} |
 |
9 |
15 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 5, 7, 9}}} |
 |
9 |
15 |
18 |
 |
6 |
{Circulant, {18, {1, 3, 4, 8, 9}}} |
 |
9 |
15 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 7, 10}}} |
 |
9 |
15 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 4, 5, 10}}} |
 |
9 |
15 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 9, 10}}} |
 |
9 |
15 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 7, 8, 10}}} |
 |
9 |
15 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 5, 10}}} |
 |
9 |
15 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 8, 10}}} |
 |
9 |
15 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 6, 8, 10}}} |
 |
9 |
15 |
20 |
 |
5 |
{Circulant, {20, {1, 6, 8, 9, 10}}} |
 |
9 |
15 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 38}} |
 |
9 |
15 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 3, 8, 10}}} |
 |
9 |
15 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 4, 9, 10}}} |
 |
9 |
15 |
20 |
 |
6 |
{Circulant, {20, {1, 5, 8, 9, 10}}} |
 |
9 |
15 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 35}} |
 |
9 |
15 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 36}} |
 |
9 |
15 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 24}} |
 |
9 |
15 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 20}} |
 |
9 |
15 |
28 |
 |
5 |
{NoncayleyTransitive, {28, 15}} |
 |
9 |
15 |
28 |
 |
5 |
{NoncayleyTransitive, {28, 17}} |
 |
9 |
15 |
96 |
 |
4 |
Snub24CellGraph |
 |
9 |
16 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 6, 7, 9}}} |
 |
9 |
16 |
18 |
 |
5 |
{Circulant, {18, {1, 4, 6, 8, 9}}} |
 |
9 |
16 |
18 |
 |
6 |
{Circulant, {18, {1, 3, 4, 6, 9}}} |
 |
9 |
16 |
18 |
 |
6 |
{Circulant, {18, {1, 3, 5, 6, 9}}} |
 |
9 |
16 |
18 |
 |
6 |
{Circulant, {18, {1, 3, 6, 8, 9}}} |
 |
9 |
16 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 26}} |
 |
9 |
16 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 27}} |
 |
9 |
16 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 31}} |
 |
9 |
16 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 32}} |
 |
9 |
16 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 33}} |
 |
9 |
16 |
30 |
 |
6 |
{Rook, {5, 6}} |
 |
9 |
17 |
18 |
 |
6 |
{NoncayleyTransitive, {18, 3}} |
 |
9 |
18 |
16 |
 |
4 |
{RookComplement, {4, 4}} |
 |
9 |
18 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 3, 6, 8}}} |
 |
9 |
18 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 3, 7, 8}}} |
 |
9 |
18 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 4, 7, 8}}} |
 |
9 |
18 |
16 |
 |
6 |
ShrikhandeComplementGraph |
 |
9 |
18 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 4, 5, 9}}} |
 |
9 |
18 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 9}}} |
 |
9 |
18 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 8, 9}}} |
 |
9 |
18 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 4, 5, 9}}} |
 |
9 |
18 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 4, 8, 9}}} |
 |
9 |
18 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 10}}} |
 |
9 |
18 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 9, 10}}} |
 |
9 |
18 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 8, 10}}} |
 |
9 |
18 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 8, 9, 10}}} |
 |
9 |
18 |
20 |
 |
5 |
{Circulant, {20, {2, 4, 5, 8, 10}}} |
 |
9 |
18 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 4, 6, 10}}} |
 |
9 |
18 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 6, 8, 10}}} |
 |
9 |
18 |
20 |
 |
6 |
{Circulant, {20, {1, 3, 4, 7, 10}}} |
 |
9 |
18 |
20 |
 |
6 |
{Circulant, {20, {2, 4, 5, 6, 10}}} |
 |
9 |
18 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 37}} |
 |
9 |
18 |
20 |
 |
6 |
{Tetrahedral, 6} |
 |
9 |
18 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 10}}} |
 |
9 |
18 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 27}} |
 |
9 |
18 |
28 |
 |
7 |
{Rook, {4, 7}} |
 |
9 |
19 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 6, 8, 9}}} |
 |
9 |
19 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 6, 9}}} |
 |
9 |
19 |
18 |
 |
6 |
{Circulant, {18, {1, 4, 5, 6, 9}}} |
 |
9 |
19 |
18 |
 |
6 |
{Circulant, {18, {1, 5, 6, 7, 9}}} |
 |
9 |
19 |
18 |
 |
6 |
{Circulant, {18, {2, 3, 4, 6, 9}}} |
 |
9 |
21 |
14 |
 |
5 |
{Circulant, {14, {1, 2, 3, 6, 7}}} |
 |
9 |
21 |
14 |
 |
6 |
{Circulant, {14, {1, 2, 3, 5, 7}}} |
 |
9 |
21 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 3, 4, 8}}} |
 |
9 |
21 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 3, 5, 8}}} |
 |
9 |
21 |
16 |
 |
6 |
{Circulant, {16, {1, 3, 4, 5, 8}}} |
 |
9 |
21 |
16 |
 |
6 |
{NoncayleyTransitive, {16, 6}} |
 |
9 |
21 |
20 |
 |
4 |
{Circulant, {20, {1, 5, 6, 9, 10}}} |
 |
9 |
21 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 6, 10}}} |
 |
9 |
21 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 41}} |
 |
9 |
21 |
20 |
 |
6 |
{Circulant, {20, {1, 4, 5, 9, 10}}} |
 |
9 |
22 |
24 |
 |
8 |
{Rook, {3, 8}} |
 |
9 |
24 |
14 |
 |
7 |
{Circulant, {14, {1, 2, 3, 4, 7}}} |
 |
9 |
24 |
14 |
 |
7 |
{Circulant, {14, {1, 2, 4, 6, 7}}} |
 |
9 |
24 |
14 |
 |
7 |
{Circulant, {14, {1, 2, 5, 6, 7}}} |
 |
9 |
24 |
14 |
 |
7 |
{VertexTransitive, {14, 48}} |
 |
9 |
24 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 4, 6, 8}}} |
 |
9 |
24 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 6, 7, 8}}} |
 |
9 |
24 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 7, 8, 9}}} |
 |
9 |
24 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 8, 9, 10}}} |
 |
9 |
27 |
12 |
 |
4 |
{CompleteKPartite, {3, 3, 3, 3}} |
 |
9 |
28 |
12 |
 |
6 |
{Circulant, {12, {1, 2, 3, 4, 6}}} |
 |
9 |
28 |
12 |
 |
6 |
{Circulant, {12, {1, 2, 4, 5, 6}}} |
 |
9 |
28 |
12 |
 |
6 |
{Circulant, {12, {1, 3, 4, 5, 6}}} |
 |
9 |
28 |
18 |
 |
9 |
{Rook, {2, 9}} |
 |
9 |
36 |
10 |
 |
10 |
{Complete, 10} |
 |
10 |
5 |
27 |
 |
6 |
{GeneralizedQuadrangle, {2, 4}} |
 |
10 |
5 |
243 |
 |
3 |
{Hamming, {5, 3}} |
 |
10 |
5 |
315 |
 |
4 |
HallJankoNearOctagon |
 |
10 |
6 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 34}} |
 |
10 |
12 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 8, 9}}} |
 |
10 |
12 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 38}} |
 |
10 |
12 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 29}} |
 |
10 |
12 |
28 |
 |
5 |
{NoncayleyTransitive, {28, 19}} |
 |
10 |
14 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 35}} |
 |
10 |
14 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 41}} |
 |
10 |
14 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 34}} |
 |
10 |
15 |
19 |
 |
4 |
{Circulant, {19, {1, 2, 4, 5, 8}}} |
 |
10 |
15 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 7, 8}}} |
 |
10 |
15 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 6, 9}}} |
 |
10 |
15 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 6, 8, 9}}} |
 |
10 |
15 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 46}} |
 |
10 |
15 |
21 |
 |
5 |
{Kneser, {7, 2}} |
 |
10 |
15 |
26 |
False |
5 |
{Paulus, {26, 1}} |
 |
10 |
15 |
26 |
False |
5 |
{Paulus, {26, 2}} |
 |
10 |
15 |
26 |
False |
5 |
{Paulus, {26, 8}} |
 |
10 |
15 |
26 |
False |
6 |
{Paulus, {26, 3}} |
 |
10 |
15 |
26 |
False |
6 |
{Paulus, {26, 4}} |
 |
10 |
15 |
26 |
False |
6 |
{Paulus, {26, 5}} |
 |
10 |
15 |
26 |
False |
6 |
{Paulus, {26, 6}} |
 |
10 |
15 |
26 |
False |
6 |
{Paulus, {26, 7}} |
 |
10 |
15 |
26 |
False |
6 |
{Paulus, {26, 9}} |
 |
10 |
15 |
26 |
False |
6 |
{Paulus, {26, 10}} |
 |
10 |
15 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 30}} |
 |
10 |
15 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 32}} |
 |
10 |
15 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 33}} |
 |
10 |
15 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 37}} |
 |
10 |
15 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 38}} |
 |
10 |
15 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 39}} |
 |
10 |
15 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 28}} |
 |
10 |
15 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 31}} |
 |
10 |
15 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 35}} |
 |
10 |
15 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 40}} |
 |
10 |
15 |
28 |
 |
5 |
{NoncayleyTransitive, {28, 18}} |
 |
10 |
15 |
28 |
 |
6 |
{NoncayleyTransitive, {28, 20}} |
 |
10 |
15 |
31 |
 |
6 |
{Cyclotomic, 31} |
 |
10 |
15 |
63 |
 |
5 |
ConwaySmithGraph |
 |
10 |
15 |
65 |
 |
5 |
HallGraph |
 |
10 |
15 |
720 |
 |
5 |
Rectified600CellGraph |
 |
10 |
17 |
24 |
 |
5 |
{NoncayleyTransitive, {24, 37}} |
 |
10 |
17 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 36}} |
 |
10 |
18 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 7, 8}}} |
 |
10 |
18 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 9}}} |
 |
10 |
18 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 7, 9}}} |
 |
10 |
18 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 4, 5, 7}}} |
 |
10 |
18 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 6, 9}}} |
 |
10 |
18 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 8}}} |
 |
10 |
18 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 7, 8}}} |
 |
10 |
18 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 5, 6, 8}}} |
 |
10 |
18 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 7, 9}}} |
 |
10 |
18 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 44}} |
 |
10 |
18 |
20 |
 |
6 |
{Circulant, {20, {1, 3, 4, 5, 7}}} |
 |
10 |
18 |
20 |
 |
6 |
{Circulant, {20, {1, 3, 4, 5, 9}}} |
 |
10 |
18 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 47}} |
 |
10 |
19 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 6, 7}}} |
 |
10 |
19 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 4, 6, 8}}} |
 |
10 |
19 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 39}} |
 |
10 |
19 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 42}} |
 |
10 |
19 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 43}} |
 |
10 |
20 |
18 |
 |
3 |
{RookComplement, {3, 6}} |
 |
10 |
20 |
24 |
 |
4 |
{ArcTransitive, {24, 18}} |
 |
10 |
20 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 40}} |
 |
10 |
20 |
36 |
 |
6 |
{Rook, {6, 6}} |
 |
10 |
20 |
186 |
 |
6 |
{GeneralizedHexagon, {5, 1}} |
 |
10 |
21 |
17 |
 |
5 |
{Circulant, {17, {1, 2, 3, 6, 7}}} |
 |
10 |
21 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 4, 5, 7}}} |
 |
10 |
21 |
18 |
 |
3 |
{Circulant, {18, {1, 2, 4, 5, 8}}} |
 |
10 |
21 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 5, 7}}} |
 |
10 |
21 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 5, 9}}} |
 |
10 |
21 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 6, 7}}} |
 |
10 |
21 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 6, 8}}} |
 |
10 |
21 |
19 |
 |
6 |
{Circulant, {19, {1, 2, 5, 6, 8}}} |
 |
10 |
21 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 9}}} |
 |
10 |
21 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 7}}} |
 |
10 |
21 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 6, 7}}} |
 |
10 |
21 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 9}}} |
 |
10 |
21 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 6, 8}}} |
 |
10 |
21 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 9}}} |
 |
10 |
21 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 8, 9}}} |
 |
10 |
21 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 5, 7, 8}}} |
 |
10 |
21 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 6, 8, 9}}} |
 |
10 |
21 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 6, 8}}} |
 |
10 |
21 |
20 |
 |
5 |
{Circulant, {20, {1, 5, 6, 8, 9}}} |
 |
10 |
21 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 48}} |
 |
10 |
21 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 3, 5, 8}}} |
 |
10 |
21 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 42}} |
 |
10 |
21 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 43}} |
 |
10 |
21 |
35 |
 |
7 |
{Rook, {5, 7}} |
 |
10 |
22 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 6, 8}}} |
 |
10 |
22 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 4, 6, 7}}} |
 |
10 |
22 |
18 |
 |
5 |
{Circulant, {18, {1, 3, 4, 5, 6}}} |
 |
10 |
22 |
18 |
 |
6 |
{Circulant, {18, {1, 3, 5, 6, 7}}} |
 |
10 |
22 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 44}} |
 |
10 |
24 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 3, 5, 7}}} |
 |
10 |
24 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 4, 6, 7}}} |
 |
10 |
24 |
16 |
 |
4 |
{Circulant, {16, {1, 3, 4, 5, 7}}} |
 |
10 |
24 |
17 |
 |
6 |
{Circulant, {17, {1, 2, 3, 4, 8}}} |
 |
10 |
24 |
17 |
 |
6 |
{Circulant, {17, {1, 2, 3, 5, 8}}} |
 |
10 |
24 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 7, 8}}} |
 |
10 |
24 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 8}}} |
 |
10 |
24 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 5, 6}}} |
 |
10 |
24 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 7}}} |
 |
10 |
24 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 8}}} |
 |
10 |
24 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 5, 7}}} |
 |
10 |
24 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 7, 9}}} |
 |
10 |
24 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 6}}} |
 |
10 |
24 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 7}}} |
 |
10 |
24 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 8}}} |
 |
10 |
24 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 8, 9}}} |
 |
10 |
24 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 6}}} |
 |
10 |
24 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 5, 8}}} |
 |
10 |
24 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 7, 8}}} |
 |
10 |
24 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 6, 9}}} |
 |
10 |
24 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 8, 9}}} |
 |
10 |
24 |
20 |
 |
5 |
{Circulant, {20, {2, 4, 5, 6, 8}}} |
 |
10 |
24 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 45}} |
 |
10 |
24 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 36}} |
 |
10 |
24 |
32 |
 |
8 |
{Rook, {4, 8}} |
 |
10 |
25 |
15 |
 |
3 |
{CompleteTripartite, {5, 5, 5}} |
 |
10 |
25 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 6, 7, 8}}} |
 |
10 |
25 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 5, 6}}} |
 |
10 |
25 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 4, 5, 6}}} |
 |
10 |
25 |
21 |
 |
7 |
{Triangular, 7} |
 |
10 |
27 |
16 |
 |
4 |
{Circulant, {16, {1, 2, 3, 5, 6}}} |
 |
10 |
27 |
16 |
 |
4 |
{NoncayleyTransitive, {16, 7}} |
 |
10 |
27 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 3, 4, 7}}} |
 |
10 |
27 |
17 |
 |
6 |
{Circulant, {17, {1, 2, 3, 4, 6}}} |
 |
10 |
27 |
17 |
 |
6 |
{Circulant, {17, {1, 2, 3, 4, 7}}} |
 |
10 |
27 |
17 |
 |
6 |
{Circulant, {17, {1, 2, 3, 5, 6}}} |
 |
10 |
27 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 7}}} |
 |
10 |
27 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 6}}} |
 |
10 |
27 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 6}}} |
 |
10 |
27 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 6, 8}}} |
 |
10 |
27 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 49}} |
 |
10 |
28 |
15 |
 |
5 |
{Circulant, {15, {1, 2, 3, 5, 6}}} |
 |
10 |
28 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 6}}} |
 |
10 |
28 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 5, 6, 7}}} |
 |
10 |
29 |
15 |
 |
6 |
{VertexTransitive, {15, 42}} |
 |
10 |
29 |
27 |
 |
9 |
{Rook, {3, 9}} |
 |
10 |
30 |
15 |
 |
5 |
{Circulant, {15, {1, 2, 3, 4, 6}}} |
 |
10 |
30 |
15 |
 |
5 |
{Circulant, {15, {1, 2, 3, 4, 7}}} |
 |
10 |
30 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 4, 5}}} |
 |
10 |
30 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 4, 6}}} |
 |
10 |
30 |
16 |
 |
8 |
{HalvedCube, 5} |
 |
10 |
30 |
17 |
 |
9 |
{Circulant, {17, {1, 2, 3, 4, 5}}} |
 |
10 |
30 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 5}}} |
 |
10 |
30 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 5}}} |
 |
10 |
30 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5}}} |
 |
10 |
31 |
15 |
 |
8 |
{Circulant, {15, {1, 2, 3, 4, 5}}} |
 |
10 |
31 |
15 |
 |
8 |
{Circulant, {15, {1, 2, 3, 5, 7}}} |
 |
10 |
31 |
15 |
 |
8 |
{Circulant, {15, {1, 3, 4, 5, 6}}} |
 |
10 |
31 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 4, 6, 8}}} |
 |
10 |
31 |
18 |
 |
9 |
{Circulant, {18, {2, 3, 4, 6, 8}}} |
 |
10 |
33 |
14 |
 |
7 |
{Circulant, {14, {1, 2, 3, 4, 5}}} |
 |
10 |
33 |
14 |
 |
7 |
{Circulant, {14, {1, 2, 3, 4, 6}}} |
 |
10 |
33 |
14 |
 |
7 |
{VertexTransitive, {14, 52}} |
 |
10 |
36 |
13 |
 |
7 |
{Circulant, {13, {1, 2, 3, 4, 5}}} |
 |
10 |
36 |
20 |
 |
10 |
{Rook, {2, 10}} |
 |
10 |
40 |
12 |
 |
6 |
{CocktailParty, 6} |
 |
10 |
45 |
11 |
 |
11 |
{Complete, 11} |
 |
11 |
11 |
60 |
 |
5 |
{CompleteGraphSymplecticCover, {12, 5}} |
 |
11 |
12 |
30 |
 |
5 |
{Circulant, {30, {2, 5, 6, 8, 9, 15}}} |
 |
11 |
15 |
20 |
 |
4 |
{Circulant, {20, {1, 3, 5, 7, 9, 10}}} |
 |
11 |
15 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 42}} |
 |
11 |
15 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 47}} |
 |
11 |
18 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 46}} |
 |
11 |
18 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 43}} |
 |
11 |
18 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 51}} |
 |
11 |
20 |
24 |
 |
3 |
{NoncayleyTransitive, {24, 45}} |
 |
11 |
21 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 4, 5, 7, 10}}} |
 |
11 |
21 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 44}} |
 |
11 |
21 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 45}} |
 |
11 |
21 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 48}} |
 |
11 |
21 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 49}} |
 |
11 |
21 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 50}} |
 |
11 |
21 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 53}} |
 |
11 |
21 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 46}} |
 |
11 |
21 |
28 |
 |
6 |
{NoncayleyTransitive, {28, 21}} |
 |
11 |
23 |
24 |
 |
5 |
{NoncayleyTransitive, {24, 53}} |
 |
11 |
23 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 51}} |
 |
11 |
24 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 51}} |
 |
11 |
24 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 7, 8, 10}}} |
 |
11 |
24 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 53}} |
 |
11 |
24 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 52}} |
 |
11 |
25 |
42 |
 |
7 |
{Rook, {6, 7}} |
 |
11 |
26 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 47}} |
 |
11 |
26 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 48}} |
 |
11 |
26 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 49}} |
 |
11 |
26 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 52}} |
 |
11 |
27 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 5, 7, 9}}} |
 |
11 |
27 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 6, 10}}} |
 |
11 |
27 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 9, 10}}} |
 |
11 |
27 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 6, 7, 10}}} |
 |
11 |
27 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 5, 6, 9, 10}}} |
 |
11 |
27 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 8, 10}}} |
 |
11 |
27 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 5, 8, 10}}} |
 |
11 |
27 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 6, 8, 9, 10}}} |
 |
11 |
27 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 3, 6, 8, 10}}} |
 |
11 |
27 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 3, 7, 8, 10}}} |
 |
11 |
27 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 4, 6, 9, 10}}} |
 |
11 |
27 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 5, 6, 8, 10}}} |
 |
11 |
27 |
20 |
 |
6 |
{Circulant, {20, {1, 3, 4, 5, 7, 10}}} |
 |
11 |
27 |
20 |
 |
6 |
{Circulant, {20, {1, 3, 4, 5, 9, 10}}} |
 |
11 |
27 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 50}} |
 |
11 |
27 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 9, 10}}} |
 |
11 |
27 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 5, 8, 9, 10}}} |
 |
11 |
27 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 41}} |
 |
11 |
27 |
40 |
 |
8 |
{Rook, {5, 8}} |
 |
11 |
28 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 4, 6, 7, 9}}} |
 |
11 |
28 |
18 |
 |
6 |
{Circulant, {18, {1, 3, 5, 6, 7, 9}}} |
 |
11 |
28 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 50}} |
 |
11 |
28 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 54}} |
 |
11 |
28 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 55}} |
 |
11 |
30 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 8, 9}}} |
 |
11 |
30 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 7, 10}}} |
 |
11 |
30 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 7, 9, 10}}} |
 |
11 |
30 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 5, 7, 8, 10}}} |
 |
11 |
30 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 6, 8, 10}}} |
 |
11 |
30 |
20 |
 |
6 |
{Circulant, {20, {1, 3, 4, 7, 9, 10}}} |
 |
11 |
30 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 52}} |
 |
11 |
30 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 54}} |
 |
11 |
30 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 7, 10}}} |
 |
11 |
30 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 8, 10}}} |
 |
11 |
30 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 5, 8, 10}}} |
 |
11 |
30 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 4, 5, 9, 10}}} |
 |
11 |
30 |
20 |
 |
7 |
{Circulant, {20, {1, 3, 4, 7, 8, 10}}} |
 |
11 |
30 |
20 |
 |
7 |
{Circulant, {20, {1, 5, 6, 8, 9, 10}}} |
 |
11 |
31 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 5, 6, 9}}} |
 |
11 |
31 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 6, 7, 9}}} |
 |
11 |
31 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 4, 5, 6, 9}}} |
 |
11 |
31 |
18 |
 |
6 |
{Circulant, {18, {1, 3, 4, 6, 8, 9}}} |
 |
11 |
31 |
36 |
 |
9 |
{Rook, {4, 9}} |
 |
11 |
32 |
24 |
 |
7 |
{NoncayleyTransitive, {24, 56}} |
 |
11 |
33 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 7, 9}}} |
 |
11 |
33 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 4, 5, 7, 9}}} |
 |
11 |
33 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 4, 5, 8, 9}}} |
 |
11 |
33 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5, 10}}} |
 |
11 |
33 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 6, 10}}} |
 |
11 |
33 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 4, 5, 6, 10}}} |
 |
11 |
33 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 4, 8, 9, 10}}} |
 |
11 |
33 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 6, 8, 9, 10}}} |
 |
11 |
33 |
20 |
 |
7 |
{Circulant, {20, {1, 4, 5, 8, 9, 10}}} |
 |
11 |
33 |
20 |
 |
7 |
{NoncayleyTransitive, {20, 55}} |
 |
11 |
33 |
20 |
 |
7 |
{NoncayleyTransitive, {20, 56}} |
 |
11 |
34 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 6, 9}}} |
 |
11 |
34 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 6, 8, 9}}} |
 |
11 |
34 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 5, 6, 7, 9}}} |
 |
11 |
34 |
18 |
 |
6 |
{Circulant, {18, {1, 3, 4, 5, 6, 9}}} |
 |
11 |
36 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 3, 4, 7, 8}}} |
 |
11 |
36 |
16 |
 |
6 |
{Circulant, {16, {1, 2, 3, 5, 7, 8}}} |
 |
11 |
36 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 5, 9}}} |
 |
11 |
36 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 7, 8, 9}}} |
 |
11 |
36 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 8, 9, 10}}} |
 |
11 |
36 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 54}} |
 |
11 |
37 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 4, 6, 8, 9}}} |
 |
11 |
37 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 6, 7, 8, 9}}} |
 |
11 |
37 |
18 |
 |
9 |
{Circulant, {18, {2, 3, 4, 6, 8, 9}}} |
 |
11 |
37 |
30 |
 |
10 |
{Rook, {3, 10}} |
 |
11 |
39 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 4, 5, 8}}} |
 |
11 |
39 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 4, 6, 8}}} |
 |
11 |
39 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 5, 6, 8}}} |
 |
11 |
39 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 4, 6, 7, 8}}} |
 |
11 |
39 |
16 |
 |
8 |
{Circulant, {16, {1, 3, 4, 5, 7, 8}}} |
 |
11 |
39 |
16 |
 |
8 |
{NoncayleyTransitive, {16, 8}} |
 |
11 |
39 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 4, 6, 8, 10}}} |
 |
11 |
39 |
20 |
 |
10 |
{Circulant, {20, {1, 4, 5, 6, 9, 10}}} |
 |
11 |
39 |
20 |
 |
10 |
{Circulant, {20, {2, 4, 5, 6, 8, 10}}} |
 |
11 |
45 |
14 |
 |
7 |
{Circulant, {14, {1, 2, 3, 4, 6, 7}}} |
 |
11 |
45 |
14 |
 |
8 |
{Circulant, {14, {1, 2, 3, 4, 5, 7}}} |
 |
11 |
55 |
12 |
 |
12 |
{Complete, 12} |
 |
12 |
6 |
68 |
 |
5 |
DoroGraph |
 |
12 |
6 |
208 |
 |
N/A |
PGammaU34OnNonisotropicPoints |
 |
12 |
6 |
729 |
 |
3 |
{Hamming, {6, 3}} |
 |
12 |
12 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 23}} |
 |
12 |
12 |
30 |
 |
4 |
{ArcTransitive, {30, 23}} |
 |
12 |
12 |
37 |
 |
6 |
{Cyclotomic, 37} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 1}} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 2}} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 3}} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 4}} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 5}} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 12}} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 15}} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 17}} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 18}} |
 |
12 |
12 |
40 |
False |
5 |
{StronglyRegular, {{40, 12, 2, 4}, 23}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 6}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 7}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 8}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 9}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 10}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 11}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 13}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 14}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 16}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 19}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 20}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 21}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 22}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 24}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 25}} |
 |
12 |
12 |
40 |
False |
6 |
{StronglyRegular, {{40, 12, 2, 4}, 26}} |
 |
12 |
12 |
40 |
 |
5 |
{GeneralizedQuadrangleAndDualPointGraph, {{3, 3}, 2}} |
 |
12 |
12 |
40 |
 |
6 |
{GeneralizedQuadrangleAndDualPointGraph, {{3, 3}, 1}} |
 |
12 |
12 |
256 |
 |
4 |
{Doob, {1, 2}} |
 |
12 |
12 |
256 |
 |
4 |
{Egawa, {2, 0}} |
 |
12 |
12 |
256 |
 |
4 |
{Hamming, {4, 4}} |
 |
12 |
12 |
364 |
 |
N/A |
{GeneralizedHexagonAndDualPointGraph, {3, 3}} |
 |
12 |
18 |
27 |
 |
3 |
{ArcTransitive, {27, 11}} |
 |
12 |
18 |
30 |
 |
3 |
{ArcTransitive, {30, 17}} |
 |
12 |
18 |
45 |
 |
5 |
{GeneralizedQuadranglePointGraph, {4, 2}} |
 |
12 |
18 |
125 |
 |
5 |
{Hamming, {3, 5}} |
 |
12 |
20 |
24 |
 |
4 |
KroneckerProductOfIcosahedralGraphComplementAndOnesMatrixJ2 |
 |
12 |
23 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 63}} |
 |
12 |
24 |
24 |
 |
3 |
{Circulant, {24, {1, 2, 5, 7, 10, 11}}} |
 |
12 |
24 |
26 |
 |
5 |
{Circulant, {26, {1, 3, 4, 9, 10, 12}}} |
 |
12 |
24 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 61}} |
 |
12 |
24 |
27 |
 |
3 |
{ArcTransitive, {27, 12}} |
 |
12 |
24 |
28 |
 |
4 |
{NoncayleyTransitive, {28, 22}} |
 |
12 |
24 |
28 |
 |
5 |
{NoncayleyTransitive, {28, 25}} |
 |
12 |
27 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 57}} |
 |
12 |
27 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 58}} |
 |
12 |
27 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 59}} |
 |
12 |
27 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 55}} |
 |
12 |
27 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 56}} |
 |
12 |
27 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 60}} |
 |
12 |
27 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 66}} |
 |
12 |
27 |
28 |
 |
6 |
{NoncayleyTransitive, {28, 24}} |
 |
12 |
29 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 66}} |
 |
12 |
29 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 60}} |
 |
12 |
29 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 61}} |
 |
12 |
29 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 65}} |
 |
12 |
30 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 7, 9}}} |
 |
12 |
30 |
20 |
 |
6 |
{Circulant, {20, {1, 3, 4, 5, 7, 9}}} |
 |
12 |
30 |
21 |
 |
3 |
{RookComplement, {3, 7}} |
 |
12 |
30 |
25 |
False |
5 |
{Paulus, {25, 11}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 1}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 2}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 3}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 4}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 5}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 6}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 7}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 8}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 9}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 10}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 12}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 13}} |
 |
12 |
30 |
25 |
False |
6 |
{Paulus, {25, 14}} |
 |
12 |
30 |
25 |
 |
5 |
{Paley, 25} |
 |
12 |
30 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 57}} |
 |
12 |
30 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 58}} |
 |
12 |
30 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 59}} |
 |
12 |
30 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 62}} |
 |
12 |
30 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 64}} |
 |
12 |
30 |
27 |
 |
7 |
{ArcTransitive, {27, 17}} |
 |
12 |
30 |
35 |
 |
6 |
{Tetrahedral, 7} |
 |
12 |
30 |
49 |
 |
7 |
{Rook, {7, 7}} |
 |
12 |
30 |
120 |
 |
5 |
SixHundredCellGraph |
 |
12 |
30 |
175 |
 |
7 |
HoffmanSingletonLineGraph |
 |
12 |
31 |
48 |
 |
8 |
{Rook, {6, 8}} |
 |
12 |
32 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 62}} |
 |
12 |
32 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 64}} |
 |
12 |
33 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 8, 9}}} |
 |
12 |
33 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 5, 6, 8, 9}}} |
 |
12 |
33 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 63}} |
 |
12 |
33 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 65}} |
 |
12 |
34 |
45 |
 |
9 |
{Rook, {5, 9}} |
 |
12 |
35 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 68}} |
 |
12 |
36 |
18 |
 |
3 |
{CompleteTripartite, {6, 6, 6}} |
 |
12 |
36 |
19 |
 |
5 |
{Circulant, {19, {1, 2, 3, 5, 6, 9}}} |
 |
12 |
36 |
20 |
 |
4 |
{NoncayleyTransitive, {20, 57}} |
 |
12 |
36 |
20 |
 |
4 |
{RookComplement, {4, 5}} |
 |
12 |
36 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 6, 9}}} |
 |
12 |
36 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 7, 8}}} |
 |
12 |
36 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 7, 8, 9}}} |
 |
12 |
36 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 7, 8}}} |
 |
12 |
36 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 6, 8, 9}}} |
 |
12 |
36 |
20 |
 |
5 |
{EdgeTransitive, {20, 38}} |
 |
12 |
36 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 61}} |
 |
12 |
36 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 3, 5, 8, 9}}} |
 |
12 |
36 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 58}} |
 |
12 |
36 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 59}} |
 |
12 |
36 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 60}} |
 |
12 |
36 |
28 |
False |
7 |
{Chang, 1} |
 |
12 |
36 |
28 |
False |
7 |
{Chang, 2} |
 |
12 |
36 |
28 |
False |
7 |
{Chang, 3} |
 |
12 |
36 |
28 |
 |
7 |
{Triangular, 8} |
 |
12 |
37 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 67}} |
 |
12 |
39 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 6, 8}}} |
 |
12 |
39 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 7, 9}}} |
 |
12 |
39 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 5, 7, 8}}} |
 |
12 |
39 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 6, 7}}} |
 |
12 |
39 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 7, 9}}} |
 |
12 |
39 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 8, 9}}} |
 |
12 |
39 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 6, 8}}} |
 |
12 |
39 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 6, 9}}} |
 |
12 |
39 |
20 |
 |
5 |
{Circulant, {20, {1, 4, 5, 6, 8, 9}}} |
 |
12 |
39 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 3, 5, 7, 8}}} |
 |
12 |
39 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5, 9}}} |
 |
12 |
39 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 5, 6, 8}}} |
 |
12 |
39 |
20 |
 |
7 |
{NoncayleyTransitive, {20, 62}} |
 |
12 |
39 |
40 |
 |
10 |
{Rook, {4, 10}} |
 |
12 |
40 |
18 |
 |
5 |
{Circulant, {18, {1, 2, 3, 6, 7, 8}}} |
 |
12 |
42 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 5, 8}}} |
 |
12 |
42 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 5, 9}}} |
 |
12 |
42 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 6, 7}}} |
 |
12 |
42 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 6, 9}}} |
 |
12 |
42 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 6, 7}}} |
 |
12 |
42 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 6, 8}}} |
 |
12 |
42 |
20 |
 |
5 |
{Circulant, {20, {1, 3, 4, 7, 8, 9}}} |
 |
12 |
42 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 63}} |
 |
12 |
42 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5, 7}}} |
 |
12 |
42 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5, 8}}} |
 |
12 |
42 |
20 |
 |
7 |
{Circulant, {20, {1, 3, 4, 5, 7, 8}}} |
 |
12 |
43 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 6, 7}}} |
 |
12 |
43 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 5, 6, 7}}} |
 |
12 |
44 |
18 |
 |
6 |
{NoncayleyTransitive, {18, 4}} |
 |
12 |
45 |
17 |
 |
6 |
{Circulant, {17, {1, 2, 3, 4, 6, 8}}} |
 |
12 |
45 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 5, 7}}} |
 |
12 |
45 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 5, 8}}} |
 |
12 |
45 |
19 |
 |
10 |
{Circulant, {19, {1, 2, 3, 4, 5, 6}}} |
 |
12 |
45 |
19 |
 |
10 |
{Circulant, {19, {1, 2, 3, 4, 5, 7}}} |
 |
12 |
45 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6}}} |
 |
12 |
45 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 64}} |
 |
12 |
46 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 3, 4, 5, 6}}} |
 |
12 |
46 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 3, 4, 6, 8}}} |
 |
12 |
46 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 4, 5, 6, 7}}} |
 |
12 |
46 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 4, 5, 6, 8}}} |
 |
12 |
48 |
16 |
 |
4 |
{CompleteKPartite, {4, 4, 4, 4}} |
 |
12 |
48 |
17 |
 |
9 |
{Circulant, {17, {1, 2, 3, 4, 5, 6}}} |
 |
12 |
48 |
17 |
 |
9 |
{Circulant, {17, {1, 2, 3, 4, 5, 7}}} |
 |
12 |
48 |
17 |
 |
9 |
{Circulant, {17, {1, 2, 3, 4, 5, 8}}} |
 |
12 |
51 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 4, 5, 6}}} |
 |
12 |
51 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 4, 5, 7}}} |
 |
12 |
54 |
15 |
 |
5 |
{CompleteKPartite, {3, 3, 3, 3, 3}} |
 |
12 |
55 |
15 |
 |
8 |
{Circulant, {15, {1, 2, 3, 4, 5, 6}}} |
 |
12 |
55 |
15 |
 |
9 |
{Circulant, {15, {1, 2, 3, 4, 5, 7}}} |
 |
12 |
60 |
14 |
 |
7 |
{CocktailParty, 7} |
 |
12 |
66 |
13 |
 |
13 |
{Complete, 13} |
 |
13 |
24 |
28 |
 |
6 |
{NoncayleyTransitive, {28, 27}} |
 |
13 |
26 |
42 |
 |
6 |
{CompleteGraphSymplecticCover, {14, 3}} |
 |
13 |
26 |
42 |
 |
6 |
CoolsaetDegraerThreeCoverOfK14 |
 |
13 |
27 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 28}} |
 |
13 |
30 |
28 |
 |
6 |
{NoncayleyTransitive, {28, 29}} |
 |
13 |
30 |
28 |
 |
6 |
{Nuciferous, {28, 1}} |
 |
13 |
33 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 67}} |
 |
13 |
33 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 74}} |
 |
13 |
36 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 69}} |
 |
13 |
36 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 70}} |
 |
13 |
36 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 68}} |
 |
13 |
36 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 69}} |
 |
13 |
36 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 71}} |
 |
13 |
36 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 77}} |
 |
13 |
36 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 33}} |
 |
13 |
36 |
56 |
 |
8 |
{Rook, {7, 8}} |
 |
13 |
38 |
24 |
 |
7 |
{NoncayleyTransitive, {24, 78}} |
 |
13 |
38 |
54 |
 |
9 |
{Rook, {6, 9}} |
 |
13 |
39 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 72}} |
 |
13 |
39 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 74}} |
 |
13 |
39 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 75}} |
 |
13 |
39 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 76}} |
 |
13 |
39 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 75}} |
 |
13 |
39 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 72}} |
 |
13 |
39 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 78}} |
 |
13 |
39 |
28 |
 |
7 |
{LocallyPaley, 13} |
 |
13 |
39 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 31}} |
 |
13 |
41 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 73}} |
 |
13 |
41 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 76}} |
 |
13 |
42 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 73}} |
 |
13 |
42 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 30}} |
 |
13 |
42 |
50 |
 |
10 |
{Rook, {5, 10}} |
 |
13 |
44 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 71}} |
 |
13 |
44 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 70}} |
 |
13 |
44 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 77}} |
 |
13 |
45 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 7, 9, 10}}} |
 |
13 |
45 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 7, 8, 10}}} |
 |
13 |
45 |
20 |
 |
6 |
{Circulant, {20, {1, 3, 4, 5, 7, 9, 10}}} |
 |
13 |
45 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 66}} |
 |
13 |
46 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 79}} |
 |
13 |
48 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 6, 7, 10}}} |
 |
13 |
48 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 6, 7, 9, 10}}} |
 |
13 |
48 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 65}} |
 |
13 |
48 |
20 |
 |
6 |
{NoncayleyTransitive, {20, 69}} |
 |
13 |
48 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5, 9, 10}}} |
 |
13 |
48 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 6, 9, 10}}} |
 |
13 |
48 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 7, 8, 10}}} |
 |
13 |
48 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 5, 6, 8, 10}}} |
 |
13 |
48 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 4, 5, 8, 9, 10}}} |
 |
13 |
48 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 5, 6, 8, 9, 10}}} |
 |
13 |
51 |
20 |
 |
5 |
{NoncayleyTransitive, {20, 70}} |
 |
13 |
51 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5, 7, 10}}} |
 |
13 |
51 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5, 8, 10}}} |
 |
13 |
51 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 7, 9, 10}}} |
 |
13 |
51 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 8, 9, 10}}} |
 |
13 |
51 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 5, 8, 9, 10}}} |
 |
13 |
51 |
20 |
 |
7 |
{Circulant, {20, {1, 3, 4, 5, 7, 8, 10}}} |
 |
13 |
51 |
20 |
 |
7 |
{NoncayleyTransitive, {20, 68}} |
 |
13 |
51 |
20 |
 |
8 |
{NoncayleyTransitive, {20, 67}} |
 |
13 |
54 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 4, 5, 7, 8, 9}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 6, 7, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 6, 8, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 5, 7, 8, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 7, 8, 9, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 4, 5, 6, 8, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 4, 5, 6, 9, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 4, 6, 8, 9, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 3, 4, 7, 8, 9, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{Circulant, {20, {1, 4, 5, 6, 8, 9, 10}}} |
 |
13 |
54 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 71}} |
 |
13 |
55 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 6, 7, 9}}} |
 |
13 |
55 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 5, 6, 7, 9}}} |
 |
13 |
57 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 5, 7, 9}}} |
 |
13 |
57 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 5, 8, 9}}} |
 |
13 |
58 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 3, 4, 5, 6, 9}}} |
 |
13 |
58 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 3, 4, 6, 8, 9}}} |
 |
13 |
58 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 3, 6, 7, 8, 9}}} |
 |
13 |
58 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 4, 5, 6, 7, 9}}} |
 |
13 |
58 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 4, 5, 6, 8, 9}}} |
 |
13 |
66 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 4, 5, 6, 8}}} |
 |
13 |
66 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 4, 5, 7, 8}}} |
 |
13 |
66 |
16 |
 |
8 |
{Circulant, {16, {1, 2, 3, 5, 6, 7, 8}}} |
 |
13 |
78 |
14 |
 |
14 |
{Complete, 14} |
 |
14 |
21 |
43 |
 |
7 |
{Cyclotomic, 43} |
 |
14 |
28 |
36 |
False |
6 |
{StronglyRegular, {{36, 14, 4, 6}, 1}} |
 |
14 |
28 |
36 |
 |
6 |
U33Graph |
 |
14 |
33 |
26 |
 |
5 |
{NoncayleyTransitive, {26, 81}} |
 |
14 |
36 |
28 |
 |
6 |
{NoncayleyTransitive, {28, 37}} |
 |
14 |
39 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 34}} |
 |
14 |
39 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 39}} |
 |
14 |
42 |
24 |
 |
3 |
{RookComplement, {3, 8}} |
 |
14 |
42 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 80}} |
 |
14 |
42 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 35}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 1}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 2}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 3}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 4}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 5}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 6}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 7}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 8}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 9}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 10}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 11}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 12}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 13}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 15}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 16}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 17}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 18}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 19}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 20}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 21}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 22}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 23}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 24}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 25}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 26}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 27}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 28}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 29}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 30}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 31}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 32}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 33}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 34}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 35}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 36}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 37}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 38}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 39}} |
 |
14 |
42 |
29 |
False |
7 |
{StronglyRegular, {{29, 14, 6, 7}, 40}} |
 |
14 |
42 |
29 |
False |
8 |
{StronglyRegular, {{29, 14, 6, 7}, 14}} |
 |
14 |
42 |
29 |
 |
8 |
{Paley, 29} |
 |
14 |
42 |
64 |
 |
8 |
{Rook, {8, 8}} |
 |
14 |
42 |
456 |
 |
8 |
{GeneralizedHexagon, {7, 1}} |
 |
14 |
43 |
63 |
 |
9 |
{Rook, {7, 9}} |
 |
14 |
45 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 85}} |
 |
14 |
46 |
60 |
 |
10 |
{Rook, {6, 10}} |
 |
14 |
48 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 80}} |
 |
14 |
48 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 81}} |
 |
14 |
48 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 83}} |
 |
14 |
48 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 86}} |
 |
14 |
48 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 87}} |
 |
14 |
48 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 79}} |
 |
14 |
48 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 84}} |
 |
14 |
48 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 88}} |
 |
14 |
48 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 92}} |
 |
14 |
48 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 83}} |
 |
14 |
48 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 86}} |
 |
14 |
48 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 87}} |
 |
14 |
48 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 38}} |
 |
14 |
49 |
21 |
 |
3 |
{CompleteTripartite, {7, 7, 7}} |
 |
14 |
49 |
36 |
 |
9 |
{Triangular, 9} |
 |
14 |
50 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 84}} |
 |
14 |
51 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 82}} |
 |
14 |
51 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 89}} |
 |
14 |
51 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 40}} |
 |
14 |
53 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 82}} |
 |
14 |
54 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 90}} |
 |
14 |
54 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 91}} |
 |
14 |
54 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 36}} |
 |
14 |
55 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 88}} |
 |
14 |
56 |
24 |
 |
8 |
KleinDistance2Graph |
 |
14 |
56 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 90}} |
 |
14 |
58 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 85}} |
 |
14 |
58 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 89}} |
 |
14 |
60 |
20 |
 |
4 |
{Circulant, {20, {1, 2, 3, 5, 6, 7, 9}}} |
 |
14 |
60 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 4, 5, 6, 8, 9}}} |
 |
14 |
60 |
20 |
 |
6 |
{Circulant, {20, {1, 2, 3, 5, 7, 8, 9}}} |
 |
14 |
63 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 6, 7, 8}}} |
 |
14 |
63 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 6, 7, 9}}} |
 |
14 |
63 |
20 |
 |
5 |
{Circulant, {20, {1, 2, 3, 4, 7, 8, 9}}} |
 |
14 |
63 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5, 8, 9}}} |
 |
14 |
63 |
20 |
 |
7 |
{NoncayleyTransitive, {20, 74}} |
 |
14 |
63 |
20 |
 |
8 |
{Circulant, {20, {1, 2, 3, 4, 5, 7, 9}}} |
 |
14 |
63 |
20 |
 |
8 |
{NoncayleyTransitive, {20, 73}} |
 |
14 |
66 |
19 |
 |
7 |
{Circulant, {19, {1, 2, 3, 4, 5, 8, 9}}} |
 |
14 |
66 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 7}}} |
 |
14 |
66 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 8}}} |
 |
14 |
66 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 9}}} |
 |
14 |
66 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 7, 8}}} |
 |
14 |
66 |
20 |
 |
10 |
{Circulant, {20, {1, 3, 4, 5, 7, 8, 9}}} |
 |
14 |
66 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 72}} |
 |
14 |
66 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 75}} |
 |
14 |
69 |
19 |
 |
10 |
{Circulant, {19, {1, 2, 3, 4, 5, 6, 7}}} |
 |
14 |
69 |
19 |
 |
10 |
{Circulant, {19, {1, 2, 3, 4, 5, 6, 8}}} |
 |
14 |
69 |
19 |
 |
10 |
{Circulant, {19, {1, 2, 3, 4, 5, 6, 9}}} |
 |
14 |
72 |
18 |
 |
6 |
{Circulant, {18, {1, 2, 3, 4, 5, 7, 8}}} |
 |
14 |
73 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 3, 4, 5, 6, 7}}} |
 |
14 |
73 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 3, 4, 5, 6, 8}}} |
 |
14 |
73 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 4, 5, 6, 7, 8}}} |
 |
14 |
78 |
17 |
 |
9 |
{Circulant, {17, {1, 2, 3, 4, 5, 6, 7}}} |
 |
14 |
84 |
16 |
 |
8 |
{CocktailParty, 8} |
 |
14 |
91 |
15 |
 |
15 |
{Complete, 15} |
 |
15 |
15 |
1024 |
 |
4 |
{Doob, {1, 3}} |
 |
15 |
15 |
1024 |
 |
4 |
{Doob, {2, 1}} |
 |
15 |
15 |
1024 |
 |
4 |
{Hamming, {5, 4}} |
 |
15 |
30 |
216 |
 |
6 |
{Hamming, {3, 6}} |
 |
15 |
45 |
28 |
False |
6 |
{ChangComplement, 1} |
 |
15 |
45 |
28 |
False |
7 |
{ChangComplement, 2} |
 |
15 |
45 |
28 |
False |
8 |
{ChangComplement, 3} |
 |
15 |
45 |
28 |
 |
6 |
{Kneser, {8, 2}} |
 |
15 |
45 |
32 |
 |
7 |
{LocallyGeneralizedQuadrangle, {2, 2}} |
 |
15 |
45 |
36 |
False |
8 |
{StronglyRegular, {{36, 15, 6, 6}, 1}} |
 |
15 |
45 |
56 |
 |
7 |
{Tetrahedral, 8} |
 |
15 |
46 |
30 |
 |
6 |
{Nuciferous, {30, 2}} |
 |
15 |
48 |
30 |
 |
5 |
{Nuciferous, {30, 11}} |
 |
15 |
49 |
72 |
 |
9 |
{Rook, {8, 9}} |
 |
15 |
51 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 95}} |
 |
15 |
51 |
30 |
 |
5 |
{Nuciferous, {30, 3}} |
 |
15 |
51 |
70 |
 |
10 |
{Rook, {7, 10}} |
 |
15 |
52 |
30 |
 |
6 |
{Nuciferous, {30, 4}} |
 |
15 |
52 |
30 |
 |
6 |
{Nuciferous, {30, 5}} |
 |
15 |
52 |
30 |
 |
6 |
{Nuciferous, {30, 6}} |
 |
15 |
52 |
30 |
 |
6 |
{Nuciferous, {30, 7}} |
 |
15 |
54 |
28 |
 |
6 |
{Nuciferous, {28, 3}} |
 |
15 |
54 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 42}} |
 |
15 |
54 |
28 |
 |
7 |
{Nuciferous, {28, 2}} |
 |
15 |
54 |
30 |
 |
6 |
{Nuciferous, {30, 10}} |
 |
15 |
55 |
30 |
 |
6 |
{Nuciferous, {30, 9}} |
 |
15 |
57 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 43}} |
 |
15 |
57 |
28 |
 |
10 |
{NoncayleyTransitive, {28, 44}} |
 |
15 |
58 |
30 |
 |
6 |
{Circulant, {30, {1, 4, 5, 8, 9, 10, 14, 15}}} |
 |
15 |
60 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 91}} |
 |
15 |
60 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 93}} |
 |
15 |
60 |
24 |
 |
4 |
{RookComplement, {4, 6}} |
 |
15 |
60 |
26 |
False |
8 |
{PaulusComplement, {26, 1}} |
 |
15 |
60 |
26 |
False |
8 |
{PaulusComplement, {26, 2}} |
 |
15 |
60 |
26 |
False |
8 |
{PaulusComplement, {26, 3}} |
 |
15 |
60 |
26 |
False |
8 |
{PaulusComplement, {26, 7}} |
 |
15 |
60 |
26 |
False |
8 |
{PaulusComplement, {26, 8}} |
 |
15 |
60 |
26 |
False |
9 |
{PaulusComplement, {26, 4}} |
 |
15 |
60 |
26 |
False |
9 |
{PaulusComplement, {26, 5}} |
 |
15 |
60 |
26 |
False |
9 |
{PaulusComplement, {26, 6}} |
 |
15 |
60 |
26 |
False |
9 |
{PaulusComplement, {26, 9}} |
 |
15 |
60 |
26 |
False |
9 |
{PaulusComplement, {26, 10}} |
 |
15 |
60 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 93}} |
 |
15 |
60 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 104}} |
 |
15 |
60 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 94}} |
 |
15 |
60 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 96}} |
 |
15 |
60 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 97}} |
 |
15 |
60 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 98}} |
 |
15 |
60 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 99}} |
 |
15 |
60 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 101}} |
 |
15 |
60 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 102}} |
 |
15 |
60 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 105}} |
 |
15 |
60 |
32 |
 |
8 |
{HalvedCube, 6} |
 |
15 |
63 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 96}} |
 |
15 |
63 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 103}} |
 |
15 |
64 |
24 |
 |
6 |
{Nuciferous, {24, 3}} |
 |
15 |
65 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 94}} |
 |
15 |
66 |
24 |
 |
6 |
{Nuciferous, {24, 4}} |
 |
15 |
66 |
24 |
 |
6 |
{Nuciferous, {24, 5}} |
 |
15 |
66 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 95}} |
 |
15 |
66 |
24 |
 |
8 |
{Nuciferous, {24, 6}} |
 |
15 |
69 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 100}} |
 |
15 |
69 |
28 |
 |
10 |
{NoncayleyTransitive, {28, 45}} |
 |
15 |
70 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 98}} |
 |
15 |
70 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 92}} |
 |
15 |
70 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 97}} |
 |
15 |
70 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 99}} |
 |
15 |
75 |
20 |
 |
4 |
{CompleteKPartite, {5, 5, 5, 5}} |
 |
15 |
78 |
20 |
 |
7 |
{Circulant, {20, {1, 2, 3, 4, 5, 8, 9, 10}}} |
 |
15 |
78 |
20 |
 |
8 |
{Circulant, {20, {1, 2, 3, 4, 5, 7, 9, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 8, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 9, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 7, 8, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 6, 7, 8, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 6, 7, 9, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 7, 8, 9, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 5, 7, 8, 9, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 4, 5, 6, 8, 9, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{Circulant, {20, {1, 3, 4, 5, 7, 8, 9, 10}}} |
 |
15 |
81 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 76}} |
 |
15 |
81 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 77}} |
 |
15 |
81 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 78}} |
 |
15 |
81 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 79}} |
 |
15 |
90 |
18 |
 |
6 |
{CompleteKPartite, {3, 3, 3, 3, 3, 3}} |
 |
15 |
91 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 3, 4, 5, 6, 8, 9}}} |
 |
15 |
91 |
18 |
 |
9 |
{Circulant, {18, {1, 2, 4, 5, 6, 7, 8, 9}}} |
 |
15 |
91 |
18 |
 |
10 |
{Circulant, {18, {1, 2, 3, 4, 5, 6, 7, 9}}} |
 |
15 |
105 |
16 |
 |
16 |
{Complete, 16} |
 |
16 |
24 |
85 |
 |
7 |
{CompleteGraphSymplecticCover, {17, 5}} |
 |
16 |
24 |
625 |
 |
5 |
{Hamming, {4, 5}} |
 |
16 |
40 |
51 |
 |
8 |
{CompleteGraphSymplecticCover, {17, 3}} |
 |
16 |
48 |
30 |
 |
3 |
{Circulant, {30, {1, 2, 4, 7, 8, 11, 13, 14}}} |
 |
16 |
48 |
35 |
False |
7 |
{StronglyRegular, {{35, 16, 6, 8}, 1}} |
 |
16 |
48 |
49 |
 |
9 |
{Cyclotomic, 49} |
 |
16 |
48 |
70 |
 |
6 |
{Johnson, {8, 4}} |
 |
16 |
56 |
27 |
 |
3 |
{RookComplement, {3, 9}} |
 |
16 |
56 |
81 |
 |
9 |
{Rook, {9, 9}} |
 |
16 |
56 |
657 |
 |
9 |
{GeneralizedHexagon, {8, 1}} |
 |
16 |
57 |
80 |
 |
10 |
{Rook, {8, 10}} |
 |
16 |
64 |
24 |
 |
3 |
{CompleteTripartite, {8, 8, 8}} |
 |
16 |
64 |
30 |
 |
5 |
{ArcTransitive, {30, 31}} |
 |
16 |
64 |
45 |
 |
9 |
{Triangular, 10} |
 |
16 |
66 |
26 |
 |
6 |
{NoncayleyTransitive, {26, 106}} |
 |
16 |
66 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 46}} |
 |
16 |
69 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 108}} |
 |
16 |
69 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 107}} |
 |
16 |
72 |
25 |
 |
5 |
{RookComplement, {5, 5}} |
 |
16 |
72 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 109}} |
 |
16 |
72 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 110}} |
 |
16 |
72 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 111}} |
 |
16 |
75 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 100}} |
 |
16 |
75 |
24 |
 |
4 |
{NoncayleyTransitive, {24, 102}} |
 |
16 |
75 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 112}} |
 |
16 |
75 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 113}} |
 |
16 |
80 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 101}} |
 |
16 |
80 |
27 |
 |
9 |
SchlaefliGraph |
 |
16 |
82 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 103}} |
 |
16 |
82 |
24 |
 |
6 |
{NoncayleyTransitive, {24, 105}} |
 |
16 |
82 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 104}} |
 |
16 |
85 |
24 |
 |
12 |
{NoncayleyTransitive, {24, 106}} |
 |
16 |
96 |
20 |
 |
5 |
{CompleteKPartite, {4, 4, 4, 4, 4}} |
 |
16 |
99 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 8}}} |
 |
16 |
99 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 9}}} |
 |
16 |
99 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 7, 8, 9}}} |
 |
16 |
99 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 80}} |
 |
16 |
99 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 81}} |
 |
16 |
99 |
20 |
 |
10 |
{NoncayleyTransitive, {20, 82}} |
 |
16 |
105 |
19 |
 |
10 |
{Circulant, {19, {1, 2, 3, 4, 5, 6, 7, 8}}} |
 |
16 |
112 |
18 |
 |
9 |
{CocktailParty, 9} |
 |
16 |
120 |
17 |
 |
17 |
{Complete, 17} |
 |
17 |
64 |
90 |
 |
10 |
{Rook, {9, 10}} |
 |
17 |
68 |
36 |
 |
9 |
{LocallyPaley, 17} |
 |
17 |
81 |
28 |
 |
8 |
{NoncayleyTransitive, {28, 47}} |
 |
17 |
81 |
28 |
 |
8 |
{NoncayleyTransitive, {28, 49}} |
 |
17 |
84 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 117}} |
 |
17 |
84 |
28 |
 |
10 |
{NoncayleyTransitive, {28, 48}} |
 |
17 |
87 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 114}} |
 |
17 |
87 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 118}} |
 |
17 |
90 |
26 |
 |
8 |
{NoncayleyTransitive, {26, 115}} |
 |
17 |
90 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 116}} |
 |
17 |
93 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 119}} |
 |
17 |
95 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 107}} |
 |
17 |
96 |
24 |
 |
8 |
{NoncayleyTransitive, {24, 108}} |
 |
17 |
100 |
24 |
 |
12 |
{NoncayleyTransitive, {24, 109}} |
 |
17 |
100 |
24 |
 |
12 |
{NoncayleyTransitive, {24, 110}} |
 |
17 |
100 |
24 |
 |
12 |
{NoncayleyTransitive, {24, 111}} |
 |
17 |
120 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 8, 10}}} |
 |
17 |
120 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 5, 7, 8, 9, 10}}} |
 |
17 |
120 |
20 |
 |
10 |
{Circulant, {20, {1, 2, 3, 4, 6, 7, 8, 9, 10}}} |
 |
17 |
120 |
20 |
 |
12 |
{Circulant, {20, {1, 2, 3, 4, 5, 6, 7, 9, 10}}} |
 |
17 |
136 |
18 |
 |
18 |
{Complete, 18} |
 |
18 |
45 |
343 |
 |
7 |
{Hamming, {3, 7}} |
 |
18 |
63 |
49 |
 |
7 |
{Pasechnik, 2} |
 |
18 |
63 |
84 |
 |
7 |
{Tetrahedral, 9} |
 |
18 |
72 |
30 |
 |
3 |
{RookComplement, {3, 10}} |
 |
18 |
72 |
37 |
False |
8 |
{StronglyRegular, {{37, 18, 8, 9}, 1}} |
 |
18 |
72 |
37 |
 |
10 |
{Paley, 37} |
 |
18 |
72 |
100 |
 |
10 |
{Rook, {10, 10}} |
 |
18 |
81 |
27 |
 |
3 |
{CompleteTripartite, {9, 9, 9}} |
 |
18 |
81 |
30 |
 |
5 |
{ArcTransitive, {30, 35}} |
 |
18 |
81 |
35 |
 |
7 |
{Grassmann, {2, {4, 2}}} |
 |
18 |
81 |
55 |
 |
11 |
{Triangular, 11} |
 |
18 |
90 |
28 |
 |
4 |
{RookComplement, {4, 7}} |
 |
18 |
93 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 52}} |
 |
18 |
93 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 55}} |
 |
18 |
96 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 54}} |
 |
18 |
96 |
28 |
 |
10 |
{NoncayleyTransitive, {28, 51}} |
 |
18 |
99 |
28 |
 |
10 |
{NoncayleyTransitive, {28, 50}} |
 |
18 |
99 |
28 |
 |
10 |
{NoncayleyTransitive, {28, 53}} |
 |
18 |
102 |
26 |
 |
7 |
{NoncayleyTransitive, {26, 122}} |
 |
18 |
105 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 120}} |
 |
18 |
105 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 121}} |
 |
18 |
105 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 123}} |
 |
18 |
105 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 125}} |
 |
18 |
108 |
24 |
 |
4 |
{Circulant, {24, {1, 2, 3, 5, 6, 7, 9, 10, 11}}} |
 |
18 |
108 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 124}} |
 |
18 |
108 |
26 |
 |
10 |
{NoncayleyTransitive, {26, 126}} |
 |
18 |
118 |
24 |
 |
12 |
{NoncayleyTransitive, {24, 112}} |
 |
18 |
135 |
21 |
 |
7 |
{Circulant, {21, {1, 2, 3, 4, 5, 6, 8, 9, 10}}} |
 |
18 |
136 |
144 |
 |
18 |
K18ReplacedSextupledCubicalGraph |
 |
18 |
144 |
20 |
 |
10 |
{CocktailParty, 10} |
 |
18 |
153 |
19 |
 |
19 |
{Complete, 19} |
 |
19 |
117 |
28 |
 |
10 |
{NoncayleyTransitive, {28, 56}} |
 |
19 |
123 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 129}} |
 |
19 |
126 |
26 |
 |
10 |
{NoncayleyTransitive, {26, 127}} |
 |
19 |
129 |
26 |
 |
13 |
{NoncayleyTransitive, {26, 128}} |
 |
19 |
171 |
20 |
 |
20 |
{Complete, 20} |
 |
20 |
10 |
81 |
 |
7 |
BrouwerHaemersGraph |
 |
20 |
10 |
84 |
 |
5 |
{Kneser, {9, 3}} |
 |
20 |
10 |
243 |
 |
N/A |
ShortenedTernaryGolayCodeCosetGraph |
 |
20 |
10 |
525 |
 |
N/A |
PGammaU35OnNonisotropicPoints |
 |
20 |
40 |
1296 |
 |
6 |
{Hamming, {4, 6}} |
 |
20 |
60 |
61 |
 |
8 |
{Cyclotomic, 61} |
 |
20 |
70 |
126 |
 |
8 |
{Johnson, {9, 4}} |
 |
20 |
90 |
41 |
 |
9 |
{Paley, 41} |
 |
20 |
90 |
121 |
 |
11 |
{Rook, {11, 11}} |
 |
20 |
100 |
30 |
 |
3 |
{CompleteTripartite, {10, 10, 10}} |
 |
20 |
100 |
66 |
 |
11 |
{Triangular, 12} |
 |
20 |
116 |
30 |
 |
6 |
KroneckerProductOfPetersenLineGraphComplementAndOnesMatrixJ2 |
 |
20 |
120 |
30 |
 |
5 |
{RookComplement, {5, 6}} |
 |
20 |
132 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 57}} |
 |
20 |
147 |
26 |
 |
9 |
{NoncayleyTransitive, {26, 130}} |
 |
20 |
150 |
25 |
 |
5 |
{Circulant, {25, {1, 2, 3, 4, 6, 7, 8, 9, 11, 12}}} |
 |
20 |
150 |
26 |
 |
13 |
{NoncayleyTransitive, {26, 131}} |
 |
20 |
160 |
24 |
 |
6 |
{Circulant, {24, {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}}} |
 |
20 |
180 |
22 |
 |
11 |
{CocktailParty, 11} |
 |
20 |
190 |
21 |
 |
21 |
{Complete, 21} |
 |
21 |
84 |
64 |
 |
8 |
{Cyclotomic, 64} |
 |
21 |
84 |
120 |
 |
10 |
{Tetrahedral, 10} |
 |
21 |
105 |
36 |
 |
7 |
{Kneser, {9, 2}} |
 |
21 |
105 |
64 |
 |
8 |
{HalvedCube, 7} |
 |
21 |
126 |
32 |
 |
4 |
{RookComplement, {4, 8}} |
 |
21 |
147 |
28 |
 |
4 |
{Circulant, {28, {1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14}}} |
 |
21 |
156 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 60}} |
 |
21 |
156 |
28 |
 |
8 |
{NoncayleyTransitive, {28, 59}} |
 |
21 |
159 |
28 |
 |
7 |
{NoncayleyTransitive, {28, 62}} |
 |
21 |
159 |
28 |
 |
10 |
{NoncayleyTransitive, {28, 61}} |
 |
21 |
159 |
28 |
 |
11 |
{NoncayleyTransitive, {28, 58}} |
 |
21 |
189 |
24 |
 |
8 |
{Circulant, {24, {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12}}} |
 |
21 |
210 |
22 |
 |
22 |
{Complete, 22} |
 |
22 |
11 |
243 |
 |
N/A |
BerlekampVanLintSeidelGraph |
 |
22 |
11 |
729 |
 |
3 |
ShortenedExtendedTernaryGolayCodeCosetGraph |
 |
22 |
66 |
67 |
 |
9 |
{Cyclotomic, 67} |
 |
22 |
110 |
144 |
 |
12 |
{Rook, {12, 12}} |
 |
22 |
121 |
78 |
 |
13 |
{Triangular, 13} |
 |
22 |
175 |
30 |
 |
15 |
{Nuciferous, {30, 12}} |
 |
22 |
183 |
28 |
 |
11 |
{NoncayleyTransitive, {28, 63}} |
 |
22 |
186 |
28 |
 |
14 |
{NoncayleyTransitive, {28, 64}} |
 |
22 |
201 |
26 |
 |
13 |
{NoncayleyTransitive, {26, 132}} |
 |
22 |
220 |
24 |
 |
12 |
{CocktailParty, 12} |
 |
22 |
231 |
23 |
 |
23 |
{Complete, 23} |
 |
23 |
213 |
28 |
 |
14 |
{NoncayleyTransitive, {28, 65}} |
 |
23 |
253 |
24 |
 |
24 |
{Complete, 24} |
 |
24 |
12 |
729 |
 |
3 |
ExtendedTernaryGolayCodeCosetGraph |
 |
24 |
96 |
73 |
 |
10 |
{Cyclotomic, 73} |
 |
24 |
96 |
210 |
 |
N/A |
{Johnson, {10, 4}} |
 |
24 |
132 |
49 |
 |
7 |
{Paley, 49} |
 |
24 |
132 |
169 |
 |
13 |
{Rook, {13, 13}} |
 |
24 |
144 |
91 |
 |
13 |
{Triangular, 14} |
 |
24 |
168 |
36 |
 |
4 |
{RookComplement, {4, 9}} |
 |
24 |
180 |
35 |
 |
5 |
{RookComplement, {5, 7}} |
 |
24 |
216 |
30 |
 |
5 |
{Circulant, {30, {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}}} |
 |
24 |
240 |
28 |
 |
7 |
{Circulant, {28, {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}}} |
 |
24 |
243 |
28 |
 |
14 |
{NoncayleyTransitive, {28, 66}} |
 |
24 |
252 |
27 |
 |
9 |
{Circulant, {27, {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13}}} |
 |
24 |
264 |
26 |
 |
13 |
{CocktailParty, 13} |
 |
24 |
276 |
25 |
 |
25 |
{Complete, 25} |
 |
25 |
100 |
252 |
 |
8 |
{Johnson, {10, 5}} |
 |
25 |
200 |
36 |
 |
6 |
{RookComplement, {6, 6}} |
 |
25 |
250 |
30 |
 |
6 |
{Circulant, {30, {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15}}} |
 |
25 |
300 |
26 |
 |
26 |
{Complete, 26} |
 |
26 |
78 |
79 |
 |
9 |
{Cyclotomic, 79} |
 |
26 |
156 |
53 |
 |
11 |
{Paley, 53} |
 |
26 |
156 |
196 |
 |
14 |
{Rook, {14, 14}} |
 |
26 |
169 |
105 |
 |
15 |
{Triangular, 15} |
 |
26 |
312 |
28 |
 |
14 |
{CocktailParty, 14} |
 |
26 |
325 |
27 |
 |
27 |
{Complete, 27} |
 |
27 |
135 |
56 |
 |
8 |
GossetDistance2Graph |
 |
27 |
216 |
40 |
 |
4 |
{RookComplement, {4, 10}} |
 |
27 |
216 |
56 |
 |
14 |
GossetGraph |
 |
27 |
324 |
30 |
 |
10 |
{Circulant, {30, {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15}}} |
 |
27 |
351 |
28 |
 |
28 |
{Complete, 28} |
 |
28 |
168 |
128 |
 |
8 |
{HalvedCube, 8} |
 |
28 |
182 |
225 |
 |
15 |
{Rook, {15, 15}} |
 |
28 |
196 |
120 |
 |
15 |
{Triangular, 16} |
 |
28 |
210 |
45 |
 |
8 |
{Kneser, {10, 2}} |
 |
28 |
252 |
40 |
 |
5 |
{RookComplement, {5, 8}} |
 |
28 |
364 |
30 |
 |
15 |
{CocktailParty, 15} |
 |
28 |
378 |
29 |
 |
29 |
{Complete, 29} |
 |
29 |
406 |
30 |
 |
30 |
{Complete, 30} |
 |
30 |
15 |
759 |
 |
N/A |
LargeWittGraph |
 |
30 |
30 |
112 |
 |
8 |
{GeneralizedQuadrangle, {3, 9}} |
 |
30 |
135 |
231 |
 |
N/A |
CameronGraph |
 |
30 |
210 |
61 |
 |
13 |
{Paley, 61} |
 |
30 |
210 |
256 |
 |
16 |
{Rook, {16, 16}} |
 |
30 |
225 |
136 |
 |
17 |
{Triangular, 17} |
 |
30 |
300 |
42 |
 |
6 |
{RookComplement, {6, 7}} |
 |
30 |
420 |
32 |
 |
16 |
{CocktailParty, 16} |
 |
32 |
64 |
105 |
 |
6 |
GoethalsSeidelGraph105 |
 |
32 |
64 |
315 |
 |
N/A |
{Soicher, 3} |
 |
32 |
192 |
97 |
 |
13 |
{Cyclotomic, 97} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 3}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 4}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 5}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 8}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 12}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 16}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 17}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 20}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 24}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 27}} |
 |
32 |
240 |
65 |
False |
11 |
{StronglyRegular, {{65, 32, 15, 16}, 30}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 1}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 2}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 6}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 7}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 9}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 10}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 11}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 13}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 14}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 15}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 18}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 19}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 21}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 22}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 23}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 25}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 26}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 28}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 29}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 31}} |
 |
32 |
240 |
65 |
False |
12 |
{StronglyRegular, {{65, 32, 15, 16}, 32}} |
 |
32 |
240 |
289 |
 |
17 |
{Rook, {17, 17}} |
 |
32 |
256 |
63 |
 |
9 |
{StronglyRegular, {{63, 32, 16, 16}, 1}} |
 |
32 |
256 |
153 |
 |
17 |
{Triangular, 18} |
 |
32 |
336 |
45 |
 |
5 |
{RookComplement, {5, 9}} |
 |
32 |
480 |
34 |
 |
17 |
{CocktailParty, 17} |
 |
33 |
33 |
1024 |
 |
N/A |
ShiKrotoveSoleGraph |
 |
34 |
261 |
64 |
 |
8 |
{Keller, 3} |
 |
34 |
272 |
324 |
 |
18 |
{Rook, {18, 18}} |
 |
34 |
289 |
171 |
 |
19 |
{Triangular, 19} |
 |
34 |
544 |
36 |
 |
18 |
{CocktailParty, 18} |
 |
35 |
70 |
120 |
 |
6 |
{Kneser, {10, 3}} |
 |
35 |
315 |
64 |
False |
11 |
{GoethalsSeidelBlockDesign, {2, 7}} |
 |
35 |
420 |
48 |
 |
6 |
{RookComplement, {6, 8}} |
 |
36 |
252 |
100 |
 |
10 |
HallJankoGraph |
 |
36 |
252 |
256 |
 |
N/A |
{HalvedCube, 9} |
 |
36 |
306 |
73 |
 |
15 |
{Paley, 73} |
 |
36 |
306 |
361 |
 |
19 |
{Rook, {19, 19}} |
 |
36 |
324 |
190 |
 |
19 |
{Triangular, 20} |
 |
36 |
378 |
55 |
 |
9 |
{Kneser, {11, 2}} |
 |
36 |
432 |
50 |
 |
5 |
{RookComplement, {5, 10}} |
 |
36 |
450 |
49 |
 |
7 |
{RookComplement, {7, 7}} |
 |
36 |
612 |
38 |
 |
19 |
{CocktailParty, 19} |
 |
38 |
342 |
400 |
 |
20 |
{Rook, {20, 20}} |
 |
38 |
684 |
40 |
 |
20 |
{CocktailParty, 20} |
 |
40 |
80 |
216 |
 |
6 |
U42Graph216 |
 |
40 |
380 |
81 |
 |
9 |
{Paley, 81} |
 |
40 |
560 |
54 |
 |
6 |
{RookComplement, {6, 9}} |
 |
42 |
357 |
155 |
 |
N/A |
{Grassmann, {2, {5, 2}}} |
 |
42 |
630 |
56 |
 |
7 |
{RookComplement, {7, 8}} |
 |
42 |
735 |
50 |
 |
25 |
HoffmanSingletonComplementGraph |
 |
44 |
462 |
89 |
 |
18 |
{Paley, 89} |
 |
45 |
270 |
126 |
 |
N/A |
ZaraGraph |
 |
45 |
270 |
378 |
 |
N/A |
ZaraGraphAntipodalThreeCover |
 |
45 |
360 |
512 |
 |
N/A |
{HalvedCube, 10} |
 |
45 |
630 |
66 |
 |
10 |
{Kneser, {12, 2}} |
 |
45 |
720 |
60 |
 |
6 |
{RookComplement, {6, 10}} |
 |
48 |
480 |
130 |
 |
13 |
{Grassmann, {3, {4, 2}}} |
 |
48 |
552 |
97 |
 |
17 |
{Paley, 97} |
 |
48 |
840 |
63 |
 |
7 |
{RookComplement, {7, 9}} |
 |
49 |
882 |
64 |
 |
8 |
{RookComplement, {8, 8}} |
 |
50 |
525 |
121 |
 |
11 |
{Pasechnik, 3} |
 |
50 |
600 |
101 |
 |
21 |
{Paley, 101} |
 |
54 |
702 |
109 |
 |
19 |
{Paley, 109} |
 |
54 |
1080 |
70 |
 |
7 |
{RookComplement, {7, 10}} |
 |
55 |
990 |
78 |
 |
11 |
{Kneser, {13, 2}} |
 |
56 |
280 |
162 |
 |
10 |
LocalMcLaughlinGraph |
 |
56 |
280 |
165 |
 |
7 |
{Kneser, {11, 3}} |
 |
56 |
280 |
486 |
 |
N/A |
{Soicher, 2} |
 |
56 |
756 |
113 |
 |
17 |
{Paley, 113} |
 |
56 |
756 |
240 |
 |
N/A |
421PolytopeGraph |
 |
56 |
784 |
120 |
 |
15 |
{StronglyRegular, {{120, 56, 28, 24}, 1}} |
 |
56 |
1176 |
72 |
 |
8 |
{RookComplement, {8, 9}} |
 |
60 |
870 |
121 |
 |
11 |
{Paley, 121} |
 |
62 |
930 |
125 |
 |
18 |
{Paley, 125} |
 |
63 |
945 |
120 |
False |
14 |
{GoethalsSeidelBlockDesign, {3, 7}} |
 |
63 |
945 |
120 |
 |
16 |
{StronglyRegular, {{120, 63, 30, 36}, 1}} |
 |
63 |
1512 |
80 |
 |
8 |
{RookComplement, {8, 10}} |
 |
64 |
1568 |
81 |
 |
9 |
{RookComplement, {9, 9}} |
 |
66 |
990 |
144 |
 |
12 |
HalvedLeonardGraph1 |
 |
66 |
990 |
144 |
 |
12 |
HalvedLeonardGraph2 |
 |
66 |
1485 |
91 |
 |
12 |
{Kneser, {14, 2}} |
 |
68 |
1122 |
137 |
 |
20 |
{Paley, 137} |
 |
70 |
35 |
495 |
 |
6 |
{Kneser, {12, 4}} |
 |
70 |
630 |
176 |
 |
12 |
{StronglyRegular, {{176, 70, 18, 34}, 1}} |
 |
72 |
720 |
175 |
 |
N/A |
HoffmanSingletonLineDistance2Graph |
 |
72 |
2016 |
90 |
 |
9 |
{RookComplement, {9, 10}} |
 |
74 |
1332 |
149 |
 |
22 |
{Paley, 149} |
 |
77 |
1540 |
144 |
False |
19 |
{GoethalsSeidelBlockDesign, {2, 11}} |
 |
78 |
1482 |
157 |
 |
23 |
{Paley, 157} |
 |
78 |
2145 |
105 |
 |
13 |
{Kneser, {15, 2}} |
 |
81 |
2592 |
100 |
 |
10 |
{RookComplement, {10, 10}} |
 |
84 |
840 |
220 |
 |
8 |
{Kneser, {12, 3}} |
 |
84 |
1722 |
169 |
 |
13 |
{Paley, 169} |
 |
90 |
1485 |
651 |
 |
N/A |
{Grassmann, {2, {6, 2}}} |
 |
98 |
1225 |
1395 |
 |
N/A |
{Grassmann, {2, {6, 3}}} |
 |
98 |
2107 |
225 |
False |
N/A |
{Pasechnik, 4} |
 |
100 |
1800 |
416 |
 |
N/A |
G24Graph |
 |
105 |
3570 |
176 |
 |
44 |
{StronglyRegular, {{176, 105, 68, 54}, 1}} |
 |
105 |
3780 |
162 |
 |
54 |
McLaughlinGraphSubconstituent2 |
 |
110 |
1540 |
672 |
 |
N/A |
MoscowSoicherGraph |
 |
110 |
2035 |
243 |
 |
N/A |
DelsarteGraph |
 |
112 |
56 |
729 |
 |
N/A |
GamesGraph |
 |
112 |
1680 |
275 |
 |
N/A |
McLaughlinGraph |
 |
112 |
2016 |
253 |
 |
N/A |
{StronglyRegular, {{253, 112, 36, 60}, 1}} |
 |
117 |
2106 |
378 |
 |
N/A |
O73Graph |
 |
117 |
2106 |
1134 |
 |
N/A |
NortonSmithGraph |
 |
120 |
2100 |
286 |
 |
9 |
{Kneser, {13, 3}} |
 |
126 |
315 |
715 |
 |
7 |
{Kneser, {13, 4}} |
 |
153 |
5508 |
324 |
False |
N/A |
JankoKharaghaniTonchevGraph |
 |
162 |
5913 |
361 |
 |
N/A |
{Pasechnik, 5} |
 |
165 |
4620 |
364 |
 |
10 |
{Kneser, {14, 3}} |
 |
171 |
9435 |
256 |
 |
16 |
{Keller, 4} |
 |
175 |
6300 |
352 |
 |
N/A |
TaylorGraphFromHigmanSims1 |
 |
175 |
8925 |
352 |
 |
N/A |
TaylorGraphFromHigmanSims2 |
 |
176 |
3520 |
672 |
 |
N/A |
U62Graph |
 |
187 |
5423 |
540 |
 |
N/A |
U42Graph540 |
 |
192 |
4608 |
765 |
False |
N/A |
IoninKharaghaniGraph |
 |
210 |
1575 |
1001 |
 |
8 |
{Kneser, {14, 4}} |
 |
220 |
9240 |
455 |
 |
11 |
{Kneser, {15, 3}} |
 |
231 |
8085 |
1024 |
 |
N/A |
TruncatedBinaryGolayCodeCosetDistance2Graph |
 |
243 |
9963 |
784 |
 |
N/A |
{Mathon, 0} |
 |
270 |
13230 |
784 |
 |
N/A |
{Mathon, 1} |
 |
275 |
15400 |
552 |
 |
N/A |
TaylorGraphFromConway2 |
 |
275 |
17875 |
540 |
False |
N/A |
{GoethalsSeidelBlockDesign, {5, 11}} |
 |
275 |
22275 |
552 |
 |
N/A |
TaylorGraphFromConway1 |
 |
297 |
17226 |
784 |
 |
N/A |
{Mathon, 2} |
 |
330 |
5775 |
1365 |
 |
9 |
{Kneser, {15, 4}} |
 |
375 |
28125 |
936 |
False |
N/A |
JankoKharaghaniGraph936 |
 |
416 |
20800 |
1782 |
 |
N/A |
SuzukiGraph |
 |
495 |
90585 |
672 |
 |
N/A |
U62ComplementGraph |
 |
776 |
225990 |
1024 |
 |
32 |
{Keller, 5} |